ABSTRACT
Objective@#Venom-induced coagulopathy (VIC) is a common snakebite complication that can cause life-threatening hemorrhage. Previous studies have shown that snake venom can cause a decrease in the erythrocyte sedimentation rate (ESR), but this has not been investigated in actual clinical practice. This study evaluated the clinical utility of erythrocyte sedimentation rate as a predictive factor for VIC in patients with a poisonous snakebite. @*Methods@#From January 2012 to December 2021, this study performed a retrospective study of patients with venomous snakebites presenting to a tertiary emergency department. The demographic and laboratory data were collected through a chart review. The patients were divided into two groups, VIC and NoVIC groups. Logistic regression analysis was performed to identify the factors that predicted the presence of VIC, and the receiver operating characteristic (ROC) curve was drawn. @*Results@#One hundred and fifty-three patients were enrolled, and 31 patients (20.3%) developed VIC. The VIC group had significantly lower ESR than the NoVIC group (5.1±5.6 vs. 14.8±13.8; P<0.001). Logistic regression analysis showed that the decreased ESR was associated with the occurrence of coagulopathy (odds ratio, 0.957; 95% confidence interval, 0.917-0.999; P=0.045). The area under the curve was 0.701 in the ROC curve, and the cutoff value was set to 4.5 mm/hr. @*Conclusion@#ESR measured upon arrival at the emergency department was available to predict venom-induced coagulopathy in snakebite patients.
ABSTRACT
Background@#We performed this study to establish a prediction model for 1-year neurological outcomes in out-of-hospital cardiac arrest (OHCA) patients who achieved return of spontaneous circulation (ROSC) immediately after ROSC using machine learning methods. @*Methods@#We performed a retrospective analysis of an OHCA survivor registry. Patients aged ≥ 18 years were included. Study participants who had registered between March 31, 2013 and December 31, 2018 were divided into a develop dataset (80% of total) and an internal validation dataset (20% of total), and those who had registered between January 1, 2019 and December 31, 2019 were assigned to an external validation dataset. Four machine learning methods, including random forest, support vector machine, ElasticNet and extreme gradient boost, were implemented to establish prediction models with the develop dataset, and the ensemble technique was used to build the final prediction model. The prediction performance of the model in the internal validation and the external validation dataset was described with accuracy, area under the receiver-operating characteristic curve, area under the precision-recall curve, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Futhermore, we established multivariable logistic regression models with the develop set and compared prediction performance with the ensemble models. The primary outcome was an unfavorable 1-year neurological outcome. @*Results@#A total of 1,207 patients were included in the study. Among them, 631, 139, and 153were assigned to the develop, the internal validation and the external validation datasets, respectively. Prediction performance metrics for the ensemble prediction model in the internal validation dataset were as follows: accuracy, 0.9620 (95% confidence interval [CI],0.9352–0.9889); area under receiver-operator characteristics curve, 0.9800 (95% CI, 0.9612– 0.9988); area under precision-recall curve, 0.9950 (95% CI, 0.9860–1.0000); sensitivity, 0.9594 (95% CI, 0.9245–0.9943); specificity, 0.9714 (95% CI, 0.9162–1.0000); PPV, 0.9916 (95% CI, 0.9752–1.0000); NPV, 0.8718 (95% CI, 0.7669–0.9767). Prediction performance metrics for the model in the external validation dataset were as follows: accuracy, 0.8509 (95% CI, 0.7825–0.9192); area under receiver-operator characteristics curve, 0.9301 (95% CI, 0.8845–0.9756); area under precision-recall curve, 0.9476 (95% CI, 0.9087–0.9867); sensitivity, 0.9595 (95% CI, 0.9145–1.0000); specificity, 0.6500 (95% CI, 0.5022–0.7978); PPV, 0.8353 (95% CI, 0.7564–0.9142); NPV, 0.8966 (95% CI, 0.7857–1.0000). All the prediction metrics were higher in the ensemble models, except NPVs in both the internal and the external validation datasets. @*Conclusion@#We established an ensemble prediction model for prediction of unfavorable 1-year neurological outcomes in OHCA survivors using four machine learning methods. The prediction performance of the ensemble model was higher than the multivariable logistic regression model, while its performance was slightly decreased in the external validation dataset.
ABSTRACT
Background@#We performed this study to establish a prediction model for 1-year neurological outcomes in out-of-hospital cardiac arrest (OHCA) patients who achieved return of spontaneous circulation (ROSC) immediately after ROSC using machine learning methods. @*Methods@#We performed a retrospective analysis of an OHCA survivor registry. Patients aged ≥ 18 years were included. Study participants who had registered between March 31, 2013 and December 31, 2018 were divided into a develop dataset (80% of total) and an internal validation dataset (20% of total), and those who had registered between January 1, 2019 and December 31, 2019 were assigned to an external validation dataset. Four machine learning methods, including random forest, support vector machine, ElasticNet and extreme gradient boost, were implemented to establish prediction models with the develop dataset, and the ensemble technique was used to build the final prediction model. The prediction performance of the model in the internal validation and the external validation dataset was described with accuracy, area under the receiver-operating characteristic curve, area under the precision-recall curve, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Futhermore, we established multivariable logistic regression models with the develop set and compared prediction performance with the ensemble models. The primary outcome was an unfavorable 1-year neurological outcome. @*Results@#A total of 1,207 patients were included in the study. Among them, 631, 139, and 153were assigned to the develop, the internal validation and the external validation datasets, respectively. Prediction performance metrics for the ensemble prediction model in the internal validation dataset were as follows: accuracy, 0.9620 (95% confidence interval [CI],0.9352–0.9889); area under receiver-operator characteristics curve, 0.9800 (95% CI, 0.9612– 0.9988); area under precision-recall curve, 0.9950 (95% CI, 0.9860–1.0000); sensitivity, 0.9594 (95% CI, 0.9245–0.9943); specificity, 0.9714 (95% CI, 0.9162–1.0000); PPV, 0.9916 (95% CI, 0.9752–1.0000); NPV, 0.8718 (95% CI, 0.7669–0.9767). Prediction performance metrics for the model in the external validation dataset were as follows: accuracy, 0.8509 (95% CI, 0.7825–0.9192); area under receiver-operator characteristics curve, 0.9301 (95% CI, 0.8845–0.9756); area under precision-recall curve, 0.9476 (95% CI, 0.9087–0.9867); sensitivity, 0.9595 (95% CI, 0.9145–1.0000); specificity, 0.6500 (95% CI, 0.5022–0.7978); PPV, 0.8353 (95% CI, 0.7564–0.9142); NPV, 0.8966 (95% CI, 0.7857–1.0000). All the prediction metrics were higher in the ensemble models, except NPVs in both the internal and the external validation datasets. @*Conclusion@#We established an ensemble prediction model for prediction of unfavorable 1-year neurological outcomes in OHCA survivors using four machine learning methods. The prediction performance of the ensemble model was higher than the multivariable logistic regression model, while its performance was slightly decreased in the external validation dataset.