Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Experimental Hematology ; (6): 57-63, 2023.
Article in Chinese | WPRIM | ID: wpr-971102

ABSTRACT

OBJECTIVE@#To study the transcriptional regulation of SP1 on the scaffold protein ARRB1 and its influence on the progression of T-cell acute lymphoblastic leukemia (T-ALL).@*METHODS@#pGL3-ARRB1-luc, pCDNA3.1-SP1 and other transcription factor plasmids that might be combined were constructed, and the binding of transcription factors to the promoter of ARRB1 was identified by dual luciferase reporter gene assay. Stable cell lines with over-expressed SP1 (JK-SP1) was constructed by lentiviral transfection, and the expression correlation of SP1 with ARRB1 was demonstrated by RT-PCR and Western blot. Further, the apoptosis, cell cycle and reactive oxygen species (ROS) were detected by flow cytometry. The effect of SP1 on propagation of leukemic cells was observed on NCG leukemic mice.@*RESULTS@#The expression of fluorescein were enhanced by co-transfection with pCDNA3.1-SP1 and pGL3-ARRB1-luc plasmids in HEK293T cell line (P<0.001), meanwhile, compared with the control group, the expression of ARRB1 mRNA and protein were increased in JK-SP1 cells (both P<0.01). Further in vitro experiments showed that, compared with the control group, the apoptosis rate was higher (x=22.78%) , the cell cycle was mostly blocked in G1 phase (63.00%), and the content of reactive oxygen species increased in JK-SP1 cells. And in vivo experiments showed that the mice injected with JK-SP1 cells through tail vein had a favorable overall survival time (average 33.8 days), less infiltration in liver and spleen tissue.@*CONCLUSION@#Transcription factor SP1 promotes the transcription and expression of ARRB1 by binding the the promoter of ARRB1 directly, thus delays the progress of T-ALL in vitro and in vivo. The study improves the pathogenesis of ARRB1 regulating the initiation and development of T-ALL, and provides theoretical basis for the development of new possible targeted drugs.


Subject(s)
Humans , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , HEK293 Cells , Reactive Oxygen Species , Transcription Factors , T-Lymphocytes , Cell Line, Tumor , Sp1 Transcription Factor/metabolism
2.
Journal of Experimental Hematology ; (6): 1456-1461, 2021.
Article in Chinese | WPRIM | ID: wpr-922279

ABSTRACT

OBJECTIVE@#To investigate the effect of β-arrestin1 on the concentration of reactive oxygen species (ROS) in the mitochondria of acute T-lymphocytic leukemia (T-ALL) cells and its possible mechanisms.@*METHODS@#The stable T-ALL cell line with knocked down β-arrestin1 (Jurkat Siβ1) was constructed. Flow cytometry and probe assays were used to detect ROS content in cell and mitochondrial, respectively. The relationship between β-arrestin1 and microRNA was detected, analyzed and Q-PCR confirmed by microRNA microarray. The target genes of microRNA were predicated by miRbase software, identified by Western blot, and validated by Dual luciferase reporter gene.@*RESULTS@#Jurkat Siβ1 stable cell line was successfully constructed and it was found that ROS content was slightly reduced in Jurkat Siβ1 at the whole cell level, and the ROS content was also significantly reduced in mitochondria. MicroRNA microarray analysis revealed that multiple T-ALL related microRNAs showed differentially expressed, in which the expression of miR-652-5p was significantly increased in Jurkat Siβ1 (P2.0), and Q-PCR showed that miR-652-5p was nearly 5-fold up-regulated in Jurkat Siβ1. miRbase predicted that the P62 gene was the target gene of miR-652-5p which could regulates mitochondrial function. P62 protein showed highly expressed in stably knocked down miR-652-5p in Jurkat cells. Dual luciferase reporter gene assay confirms that P62 was the target gene of miR-652-5p.@*CONCLUSION@#β-arrestin1 can decreases the expression of miR-652-5p and deregulates the translational inhibition of P62 mRNA, thus to increase ROS content in mitochondria of T-ALL cells.


Subject(s)
Humans , MicroRNAs/genetics , Mitochondria , Oxygen , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , RNA, Messenger , beta-Arrestin 1
SELECTION OF CITATIONS
SEARCH DETAIL