Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
China Journal of Chinese Materia Medica ; (24): 13-21, 2023.
Article in Chinese | WPRIM | ID: wpr-970496

ABSTRACT

Rheumatoid arthritis(RA) is a chronic degenerative joint disease characterized by inflammation. Due to the complex causes, no specific therapy is available. Non-steroidal anti-inflammatory agents and corticosteroids are often used(long-term, oral/injection) to interfere with related pathways for reducing inflammatory response and delaying the progression of RA, which, however, induce many side effects. Microneedle, an emerging transdermal drug delivery system, is painless and less invasive and improves drug permeability. Thus, it is widely used in the treatment of RA and is expected to be a new strategy in clinical treatment. This paper summarized the application of microneedles in the treatment of RA, providing a reference for the development of new microneedles and the expansion of its clinical application.


Subject(s)
Humans , Drug Delivery Systems , Administration, Cutaneous , Pharmaceutical Preparations , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Needles
2.
China Journal of Chinese Materia Medica ; (24): 3786-3792, 2023.
Article in Chinese | WPRIM | ID: wpr-981511

ABSTRACT

A fluorescence endoscopic laser confocal microscope(FELCM) was used to direct the injection of sinomenine solid lipid nanoparticles(Sin-SLN) into the joint, and the in vitro effectiveness of Sin-SLN in the treatment of rheumatoid arthritis(RA) was evaluated. Sin-SLN was prepared with the emulsion evaporation-low temperature curing method. The Sin-SLN prepared under the optimal conditions showed the encapsulation efficiency of 64.79%±3.12%, the drug loading of 3.84%±0.28%, the average particle size of(215.27±4.21) nm, and the Zeta potential of(-32.67±0.84) mV. Moreover, the Sin-SLN demonstrated good stability after sto-rage for 30 days. The rabbit model of RA was established by the subcutaneous injection of ovalbumin and complete Freund's adjuvant. Five groups were designed, including a control group, a model group, a Sin(1.5 mg·kg~(-1)) group, a Sin-SLN(1.5 mg·kg~(-1)) group, and a dexamethasone(positive drug, 1.0 mg·kg~(-1), ig) group. The control group and the model group only received puncture treatment without drug injection. After drug administration, the local skin temperature and knee joint diameter were monitored every day. The knee joint diameter and the local skin temperature were lower in the drug administration groups than in the model group(P<0.05, P<0.01). FELCM recorded the morphological alterations of the cartilage of knee joint. The Sin-SLN group showed compact tissue structure and smooth surface of the cartilage. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the serum le-vels of interleukin-1(IL-1) and tumor necrosis factor-α(TNF-α). The findings revealed that the Sin-SLN group had lower IL-1 and TNF-α levels than the model group(P<0.05, P<0.01). Hematoxylin-eosin(HE) staining was employed to reveal the pathological changes of the synovial tissue, which were significantly mitigated in the Sin-SLN group. The prepared Sin-SLN had uniform particle size and high stability. Through joint injection administration, a drug reservoir was formed. Sin-SLN effectively alleviate joint swelling and cartilage damage of rabbit, down-regulated the expression of inflammatory cytokines, and inhibited the epithelial proliferation and inflammatory cell infiltration of the synovial tissue, demonstrating the efficacy in treating RA.


Subject(s)
Animals , Rabbits , Tumor Necrosis Factor-alpha , Fluorescence , Arthritis, Rheumatoid/drug therapy , Interleukin-1 , Arthritis, Experimental/drug therapy
3.
Chinese Medical Journal ; (24): 3828-3832, 2013.
Article in English | WPRIM | ID: wpr-236155

ABSTRACT

<p><b>BACKGROUND</b>With aging, the human fracture risks gradually increase. This is mainly due to the corresponding changes of the biomechanical parameters of human bone presents with aging. We measured the microstructural parameters of lumbar bone from women in several age groups by micro-computed tomography and scanning electron microscopy. We observed changes in lumbar cancellous bone mineral density and in biomechanical parameters with aging to elucidate the relationship between age and risk of fracture. We provide theoretical support for human pathology, fracture risk increased with age and the individualized of each age group.</p><p><b>METHODS</b>Thirty-two fresh L3 vertebral bodies were donated from 32 women, aged 20-59 years and were divided into four age groups: 20 to 29 years (group A); 30 to 39 years (group B); 40 to 49 years (group C); and 50 to 59 years (group D). Conventional lumbar separation was performed by removing soft tissue and subsidiary structures, leaving only the vertebral body. The vertebral body was cut into halves along the median sagittal plane, maintaining the upper and lower end-plates of each half, and used for biomechanical, morphological, and density measurements.</p><p><b>RESULTS</b>Comparing group A to B, the rod-like trabecular thickness (Tb.Th) decreased; the trabecular spacing (Tb.Sp) increased; the plate-like Tb.Th decreased; bone mineral density, tissue mineral density, bone volume fraction, and bone surface fraction decreased, and the elastic modulus and the ultimate stress decreased (all changes P < 0.05). Similar significant (P < 0.05) trends were obtained when comparing group C to D. With aging, the collagen cross-linking capacity declined, the thickness of the collagen fibrils was variable (ranging from almost the same to loose, sparse, or disordered), and the finer collagen fibrils between the thick filaments were disorganized.</p><p><b>CONCLUSIONS</b>In women aged 20 to 59 years, the rod-like and plate-like Tb.Th of the vertebral body decreased, while Tb.Sp increased. Additionally, the density, elastic modulus, and ultimate stress of the cancellous bone decreased with age. These associated changes in bone microstructure, density, and biomechanics with age may lead to an increasing risk of osteoporosis and fracture.</p>


Subject(s)
Adult , Female , Humans , Middle Aged , Young Adult , Bone Density , Physiology , Lumbar Vertebrae , Metabolism , Microscopy, Electron, Scanning , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL