Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
International Journal of Cerebrovascular Diseases ; (12): 589-594, 2022.
Article in Chinese | WPRIM | ID: wpr-954175

ABSTRACT

Objective:To investigate the neuroprotective effect of cerebroprotein hydrolysate (CH) -Ⅰ on cerebral ischemia-reperfusion injury in rats and its mechanism.Methods:Eighty adult healthy male SD rats were randomly divided into sham operation group, model group, CH-Ⅰ intervention group and cerebrolysin (CBL) positive control group. The model of ischemia-reperfusion injury was induced by temporarily occluding the left middle cerebral artery with suture-occluded method. The CH-Ⅰ and CBL groups intraperitoneally injected with CH-Ⅰ and CBL at 0, 3, 6 and 12 h after reperfusion at the dose of 20 mg/kg. The sham operation group and the model group were injected with the same volume of normal saline. At 24 h after reperfusion, the behavior changes of the rats were detected by the modified neurological severity score (mNSS). The volume of cerebral infarction was detected by TTC staining. The morphology and structure of neurons in ischemic cortex were observed by Nissl staining. The apoptosis of neurons in ischemic cortex was detected by TUNEL staining. The expression changes of phosphorylated extracellular signal-regulated kinase (pERK) 1/2, phosphorylated mitogen-activated protein kinase/extracellular signal-regulated kinase (pMEK) 1/2, phosphorylated cAMP response element binding protein (pCREB) and brain-derived neurotrophic factor (BDNF) in the ischemic cortex were detected by Western blot.Results:At 24 h after reperfusion, the mNSS score and cerebral infarct volume in the model group were significantly higher and larger than those in the sham group (all P<0.001). The mNSS scores and cerebral infarct volumes in the CH-Ⅰ and CBL groups were significantly reduced compared with those in the model group (all P<0.05), but there was no significant difference between the CH-Ⅰ group and the CBL group. Nissl and TUNEL staining showed that the degenerative cell index and apoptotic cell index in the CH-Ⅰ group were significantly lower than those in the model group (all P<0.01), but there were no significant difference between the CH-Ⅰ group and the CBL group. Western blot analysis showed that compared with the sham operation group, the pMEK1/2, pERK1/2 and pCREB expressions in ischemic cortex were significantly enhanced and the BDNF expression was significantly attenuated in the model group ( P<0.05). Compared with the model group, pMEK1/2, pERK1/2, and pCREB expressions in the CH-Ⅰ group were significantly decreased (all P<0.05), and the BDNF expression was significantly increased ( P<0.05). Conclution:CH-Ⅰ can reduce cerebral infarct volume and improve neurological function, and its mechanism may be associated with the inhibition of the MEK-ERK-CREB pathway as well as the enhancement of BDNF expression.

2.
Acta Pharmaceutica Sinica ; (12): 94-100, 2012.
Article in English | WPRIM | ID: wpr-414939

ABSTRACT

An HPLC method for the determination of 18alpha-glycyrrhetinic acid and 18beta-glycyrrhetinic acid in rat plasma was established, which was used subsequently to determine the pharmacokinetic profiles of both epimers of glycyrrhetinic acid in rats. alpha-glycyrrhetinic acid, beta-glycyrrhetinic acid, and a mixture of alpha-glycyrrhetinic and beta-glycyrrhetinic acids were administered to rats via gastric infusion. Blood samples were collected at different time intervals and extracted by liquid-liquid extraction. Separation was achieved by using a Kromasil C18 column (150 mm x 4.6 mm, 5 microm) with the mobile phase composed of acetonitrile--4 mmol x L(-1) ammonium acetate solution (46 : 54, v/v) at a flow rate of 1.0 mL x min(-1), and the detection wavelength was set at 250 nm. The pharmacokinetic parameters were calculated using the software DAS 2.0. In a combined administration, the main pharmacokinetic parameters of beta-glycyrrhetinic acid are significantly different from that of alpha-glycyrrhetinic acid (P < 0.05), while no significant difference was obtained when administrated individually. Compared to the single administration, significant differences (P < 0.05) on the values of AUC(0-t) and AUC(0-infinity) of beta-glycyrrhetinic acid were observed when this chemical was administrated together with alpha-glycyrrhetinic acid. In contrast, the pharmacokinetic parameters of alpha-glycyrrhetinic acid were not affected even under the co-administration. Here, a sensitive, specific, rapid and reproducible HPLC method was developed for the pharmacokinetic studies of alpha-glycyrrhetinic acid and beta-glycyrrhetinic acid in rat plasma.

SELECTION OF CITATIONS
SEARCH DETAIL