Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
International Neurourology Journal ; : 137-149, 2021.
Article in English | WPRIM | ID: wpr-898769

ABSTRACT

Purpose@#Adenosine monophosphate-activated protein kinase (AMPK) is thought to inhibit cell proliferation or promote cell death, but the details remain unclear. In this study, we propose that AMPK inhibits the expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) by relying on the hypoxia-inducible factor 1 alpha (HIF-1α)-induced caveolin-1 (Cav-1) expression pathway in noninvasive human bladder tumor (RT4) cells. @*Methods@#In cells exposed to a hypoxic environment (0.5% oxygen), the levels of expression and phospho-activity of the relevant signaling enzymes were examined via Western blots and reverse transcription-polymerase chain reaction. Cell proliferation was assessed using a Cell Counting Kit-8 assay. @*Results@#The level of expression of Cav-1 was very low or undetectable in RT4 cells. Hypoxia was associated with significantly decreased cell growth, along with marked induction of HIF-1α and Cav-1 expression; additionally, it suppressed the expression of the antiapoptotic marker Bcl-2 while leaving AMPK activity unchanged. Under hypoxic conditions, HIF-1α acts as a transcription factor for Cav-1 mRNA gene expression. The cell growth and Bcl-2 expression suppressed under hypoxia were reversed along with decreases in the induced HIF-1α and Cav-1 levels by AMPK activation with metformin (1mM) or phenformin (0.1mM). In addition, pretreatment with AMPK small interfering RNA not only increased the hypoxia-induced expression of HIF-1α and Cav-1, but also reversed the suppression of Bcl-2 expression. These results suggest that HIF-1α and Cav-1 expression in hypoxic environments is regulated by basal AMPK activity; therefore, the inhibition of Bcl-2 expression cannot be expected when AMPK activity is suppressed, even if Cav-1 expression is elevated. @*Conclusions@#For the first time, we find that AMPK activation can regulate HIF-1α induction as well as HIF-1α-induced Cav1 expression, and the hypoxia-induced inhibitory effect on the antiapoptotic pathway in RT4 cells is due to Cav-1-dependent AMPK activity.

2.
International Neurourology Journal ; : 137-149, 2021.
Article in English | WPRIM | ID: wpr-891065

ABSTRACT

Purpose@#Adenosine monophosphate-activated protein kinase (AMPK) is thought to inhibit cell proliferation or promote cell death, but the details remain unclear. In this study, we propose that AMPK inhibits the expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) by relying on the hypoxia-inducible factor 1 alpha (HIF-1α)-induced caveolin-1 (Cav-1) expression pathway in noninvasive human bladder tumor (RT4) cells. @*Methods@#In cells exposed to a hypoxic environment (0.5% oxygen), the levels of expression and phospho-activity of the relevant signaling enzymes were examined via Western blots and reverse transcription-polymerase chain reaction. Cell proliferation was assessed using a Cell Counting Kit-8 assay. @*Results@#The level of expression of Cav-1 was very low or undetectable in RT4 cells. Hypoxia was associated with significantly decreased cell growth, along with marked induction of HIF-1α and Cav-1 expression; additionally, it suppressed the expression of the antiapoptotic marker Bcl-2 while leaving AMPK activity unchanged. Under hypoxic conditions, HIF-1α acts as a transcription factor for Cav-1 mRNA gene expression. The cell growth and Bcl-2 expression suppressed under hypoxia were reversed along with decreases in the induced HIF-1α and Cav-1 levels by AMPK activation with metformin (1mM) or phenformin (0.1mM). In addition, pretreatment with AMPK small interfering RNA not only increased the hypoxia-induced expression of HIF-1α and Cav-1, but also reversed the suppression of Bcl-2 expression. These results suggest that HIF-1α and Cav-1 expression in hypoxic environments is regulated by basal AMPK activity; therefore, the inhibition of Bcl-2 expression cannot be expected when AMPK activity is suppressed, even if Cav-1 expression is elevated. @*Conclusions@#For the first time, we find that AMPK activation can regulate HIF-1α induction as well as HIF-1α-induced Cav1 expression, and the hypoxia-induced inhibitory effect on the antiapoptotic pathway in RT4 cells is due to Cav-1-dependent AMPK activity.

SELECTION OF CITATIONS
SEARCH DETAIL