Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Indian J Exp Biol ; 2016 Jan; 54(1): 7-16
Article in English | IMSEAR | ID: sea-178643

ABSTRACT

Enzymes control all metabolic processes in human system from simple digestion of food to highly complex immune response. Physiological reactions occuring in healthy individuals are disturbed when enzymes are deficient or absent. Enzymes are administered for normalizing biological function in certain pathologies. Initially, crude proteolytic enzymes were used for the treatment of gastrointestinal disorders. Recent advances have enabled enzyme therapy as a promising tool in the treatment of cardiovascular, oncological and hereditary diseases. Now, a spectrum of other diseases are also covered under enzyme therapy. But, the available information on the use of enzymes as therapeutic agents for different diseases is scanty. This review details the enzymes which have been used to treat various diseases/disorders.

2.
Indian J Exp Biol ; 2013 Oct; 51(10): 777-788
Article in English | IMSEAR | ID: sea-149382

ABSTRACT

Enzymes are biocatalysts and because of their remarkable properties, they are extensively used in medical diagnosis. Researches in the last two decades have concentrated more on enzymes such as creatine kinase–MB, alanine transaminase, aspartate transaminase, acid phosphatase, alkaline phosphatase etc. for clinical applications. Enzymes are the preferred markers in various disease states such as myocardial infarction, jaundice, pancreatitis, cancer, neurodegenerative disorders, etc. They provide insight into the disease process by diagnosis, prognosis and assessment of response therapy. Even though the literature on the use of enzymes in various disease conditions has accumulated, a comprehensive analysis is lacking and hence this review.


Subject(s)
Biomarkers/analysis , Biomarkers/blood , Biosensing Techniques , Clinical Enzyme Tests/methods , Diagnostic Techniques and Procedures , Enzymes/analysis , Enzymes/blood , Humans
3.
Indian J Exp Biol ; 2010 Mar; 48(3): 238-247
Article in English | IMSEAR | ID: sea-144963

ABSTRACT

Herbal plants with antioxidant activities are widely used in Ayurvedic medicine for cardiac and other problems. Arjunolic acid is one such novel phytomedicine with multifunctional therapeutic applications. It is a triterpenoid saponin, isolated earlier from Terminalia arjuna and later from Combretum nelsonii, Leandra chaeton etc. Arjunolic acid is a potent antioxidant and free radical scavenger. The scientific basis for the use of arjunolic acid as cardiotonic in Ayurvedic medicine is proven by its vibrant functions such as prevention of myocardial necrosis, platelet aggregation and coagulation and lowering of blood pressure, heart rate and cholesterol levels. Its antioxidant property combined with metal chelating property protects organs from metal and drug induced toxicity. It also plays an effective role in exerting protection against both type I and type II diabetes and also ameliorates diabetic renal dysfunctions. Its therapeutic multifunctionality is shown by its wound healing, antimutagenic and antimicrobial activity. The mechanism of cytoprotection conferred by arjunolic acid can be explained by its property to reduce the oxidative stress by enhancing the antioxidant levels. Apart from its pathophysiological functions, it possesses dynamic insecticidal property and it is used as a structural molecular framework in supramolecular chemistry and nanoscience. Esters of arjunolic acid function as gelators of a wide variety of organic liquids. Experimental studies demonstrate the versatile effects of arjunolic acid, but still, further investigations are necessary to identify the functional groups responsible for its multivarious effects and to study the molecular mechanisms as well as the probable side effects/toxicity owing to its long-term use. Though the beneficial role of this triterpenoid has been assessed from various angles, a comprehensive review of its effects on biochemistry and organ pathophysiology is lacking and this forms the rationale of this review.

SELECTION OF CITATIONS
SEARCH DETAIL