Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. biol. trop ; 53(supl.3): 245-261, dic. 2005. ilus, graf, tab
Article in English | LILACS | ID: lil-454824

ABSTRACT

Species richness is one of the best indicators of biodiversity. However, there are few investigations on concordance of diversity patterns and environmental settings for marine regions. The objectives of this study were to correlate species richness of shallow water (< 200 m deep) sea stars with key oceanographic factors in the Gulf of California, México, and to predict species richness of Asteroidea using multiple regressions. In these analyses the Gulf was divided into nine sections of one degree in latitude (from 23-31 degrees N), at each section we recorded: continental shelf area (at 100 and 200 m depth), temperature mean and range at three depth levels (0, 60 and 120 m), thermocline depth, surface nutrient concentrations (nitrates, phosphates and silicates), surface photosynthetic pigment concentration, and integrated productivity. Sea star species richness at each latitudinal section was estimated from literature data, new collections and museum records. Species were assigned to one of the following feeding guilds: predators of small mobile invertebrates (I), detritivores (D), predators of colonial organisms (C), generalist carnivores (G), and planktivores (P). There are 47 shallow water asteroid species in the Gulf of California (16 I, 15 D, eight C, six G, one P and one not assigned). Total species richness and guild species richness showed strong latitudinal attenuation patterns and were higher in the southernmost Gulf, an area characterized by a narrow shelf, high temperature, and low nutrient concentrations. Species diversity for each guild was correlated to a set of oceanographic parameters: temperature, nitrate concentration, and integrated productivity were linked to richness in must cases. We detected that nutrients and surface pigments always presented negative relationships with species richness, indicating that productive environments limit asteroid diversity in the study area. Finally, the postulated regression models to estimate species richness from oceanographic data were significant and highly precise. We conclude that species richness of Asteroidea in the Gulf of California is related to oceanographic conditions and can be estimated from regional oceanographic information


Subject(s)
Animals , Biodiversity , Environmental Monitoring , Starfish/physiology , Biomass , Marine Biology , Mexico , Oceanography , Population Density , Population Dynamics , Predatory Behavior , Species Specificity
2.
Rev. biol. trop ; 53(supl.3): 357-366, dic. 2005. graf, tab
Article in English | LILACS | ID: lil-454836

ABSTRACT

The Isostichopus fuscus fishery in Mexico was heavily exploited until 1994, when it was closed due to overfishing. However, no information existed on the status of the populations. The fishery was evaluated through an age structured simulation model, and according to our analysis of the stock, the fishery can be feasible and sustainable as long as fishing mortality and age of first catch are optimized. In order to evaluate exploitation strategies, several scenarios were simulated considering different combinations of fishing intensities and ages of first catch. Input data for the model included population parameters, commercial catch and costs and benefits of the fishing operations. Yield production was strongly influenced by the fishing pressure and by the age of first capture. When the first one increased, significant decreases in yield and profits occurred. The best exploitation strategy was these parameters: fishing mortality level F = 0.15, age at first capture t(c) = 4 years, and yielding of approximately 430 tons. However, since the species reproduces for the first time at 5 years, extracting younger specimens would collapse the population. The critical value of fishing mortality was detected at Fc = 0.25. If exceeded, the population tends to exhaustion and the fishery is no longer profitable. In conclusion, I. fuscus fishery is highly vulnerable to overfishing and age of catch. It must be taken into account that the management policies should be considered as pilot and used on a regional basis. Continuous monitoring of the stock, control of the number of fishing licenses and extracting only specimens 5 yeasr-old and older (around 20 cm and >400 g), will allow the populations to recover from fishing activities


Subject(s)
Animals , Biomass , Conservation of Natural Resources , Fisheries/standards , Sea Cucumbers/physiology , Food Supply , Fish Diseases/mortality , Fisheries/economics , Mexico/epidemiology , Pacific Ocean , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL