Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
The Korean Journal of Thoracic and Cardiovascular Surgery ; : 773-780, 1999.
Article in Korean | WPRIM | ID: wpr-208860

ABSTRACT

BACKGROUND: It has been demonstrated that brief periods of calcium depletion and repletion (calcium-free preconditioning, CP) have cardioprotective effects as seen in ischemic preconditioning(IP) which enhances the recovery of post-ischemic contractile dysfunction and reduces the incidence of reperfusion-induced arrhythmia or infarct size after a prolonged ischemia. In the present study, we tested this paradoxical phenomenon in isolated rabbit hearts. MATERIAL AND METHOD: Hearts isolated from New Zealand white rabbits(1.5~2.0 Kg body weight) were perfused with Tyrode solution using the Langendorff technique. After stabilizing the baseline hemodynamics, the hearts were subjected to 45 minutes of global ischemia followed by 120 minutes of reperfusion with IP(IP group, n=7) or without IP (ischemic control group, n=7). IP was induced by a single episode of 5 minutes global ischemia and 10 minutes reperfusion. In the CP group(n=7), the hearts were subjected to perfusion with Tyrode solution with calcium depletion for 5 minutes and repletion for 10 minutes, and 45 minutes of ischemia and 120 minutes of reperfusion. Left ventricular function including developed pressure, dP/dt, heart rate, left ventricular end-diastolic pressure and coronary flow was measured. Infarct size was determined by staining with 1% triphenyltetrazolium chloride and planimetry. Data were analyzed by a one-way analysis of variance and Tukey's post-hoc test. RESULT: In comparison with the ischemic control group, IP significantly enhanced the recovery of the left ventricular function including the left ventricular developed pressure, contractility, and coronary flow; in contrast, these functional parameters of the CP group tended to be lower than those of the ischemic control group. However, the infarct size was significantly reduced by IP or CP(p<0.05). CONCLUSION: These results suggest that in isolated Langendorff-perfused rabbit heart model, CP(induced by single episode of 5 minutes calcium depletion and 10 minutes repletion) could not improve.


Subject(s)
Arrhythmias, Cardiac , Calcium , Heart , Heart Rate , Hemodynamics , Incidence , Ischemia , New Zealand , Perfusion , Reperfusion , Ventricular Function, Left
2.
The Korean Journal of Thoracic and Cardiovascular Surgery ; : 603-612, 1999.
Article in Korean | WPRIM | ID: wpr-40079

ABSTRACT

BACKGROUND: It has been documented that brief repetitive periods of ischemia and reperfusion (ischemic preconditioning, IP) enhances the recovery of post-ischemic contractile function and reduces infarct size after a longer period of ischemia. Many mechanisms have been proposed to explain this process. Recent studies have suggested that transient increase in the intracellular calcium may have triggered the activation of protein kinase C(PKC); however, there are still many controversies. Accordingly, the author performed the present study to test the hypothesis that preconditioning with high concentration of calcium before sustained subsequent ischemia(calcium preconditioning) mimics IP by PKC activation. MATERIAL AND METHOD: The isolated hearts from the New Zealand White rabbits(1.5~2.0 kg body weight) METHOD: The isolated hearts from the New Zealand White rabbits(1.5~2.0 kg body weight) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to 45-minute global ischemia followed by a 120-minute reperfusion with IP(IP group, n=13) or without IP(ischemic control, n=10). IP was induced by single episode of 5-minute global ischemia and 10-minute reperfusion. In the Ca2+ preconditioned group, perfusate containing 10(n=10) or 20 mM(n=11) CaCl2 was perfused for 10 minutes after 5-minute ischemia followed by a 45-minute global ischemia and a 120-minute reperfusion. Baseline PKC was measured after 50-minute perfusion without any treatment(n=5). Left ventricular function including developed pressure(LVDP), dP/dt, heart rate, left ventricular end-diastolic pressure(LVEDP) and coronary flow(CF) was measured. Myo car ial cytosolic and membrane PKC activities were measured by 32P-gamma-ATP incorporation into PKC-specific pepetide. The infarct size was determined using the TTC (tetrazolium salt) staining and planimetry. Data were analyzed using one-way analysis of variance(ANOVA) variance(ANOVA) and Tukey's post-hoc test. RESULT: IP increased the functional recovery including LVDP, dP/dt and CF(p<0.05) and lowered the ascending range of LVEDP(p<0.05); it also reduced the infarct size from 38% to 20%(p<0.05). In both of the Ca2+ preconditioned group, functional recovery was not significantly different in comparison with the ischemic control, however, the infarct size was reduced to 19~23%(p<0.05). In comparison with the baseline(7.31 0.31 nmol/g tissue), the activities of the cytosolic PKC tended to decrease in both the IP and Ca2+ preconditioned groups, particularly in the 10 mM Ca2+ preconditioned group(4.19 0.39 nmol/g tissue, p<0.01); the activity of membrane PKC was significantly increased in both IP and 10 mM Ca2+ preconditioned group (p<0.05; 1.84 0.21, 4.00 0.14, and 4.02 0.70 nmol/g tissue in the baseline, IP, and 10 mM Ca2+ preconditioned group, respectively). However, the activity of both PKC fractions were not significantly different between the baseline and the ischemic control. CONCLUSION: These results indicate that in isolated Langendorff-perfused rabbit heart model, calcium preconditioning with high concentration of calcium does not improve post-ischemic functional recovery. However, it does have an effect of limiting(reducing) the infart size by ischemic preconditioning, and this cardioprotective effect, at least in part, may have resulted from the activation of PKC by calcium which acts as a messenger(or trigger) to activate membrane PKC.


Subject(s)
Calcium , Cytosol , Heart Rate , Heart , Hemodynamics , Ischemia , Ischemic Preconditioning , Membranes , New Zealand , Perfusion , Protein Kinase C , Protein Kinases , Reperfusion , Ventricular Function, Left
3.
The Korean Journal of Thoracic and Cardiovascular Surgery ; : 739-748, 1998.
Article in Korean | WPRIM | ID: wpr-215473

ABSTRACT

BACKGROUND: It has been well documented that transient occlusion of the coronary artery causes myocardial ischemia and finally cell death when ischemia is sustained for more than 20 minutes. Extensive studies have revealed that ischemic myocardium cannot recover without reperfusion by adequate restoration of blood flow, however, reperfusion can cause long-lasting cardiac dysfunction and aggravation of structural damage. The author therefore attempted to examine the effect of postischemic reperfusion on myocardial ultrastructure and to determine the rationales for recanalization therapy to salvage ischemic myocardium. MATERIALS AND METHODS: Young Holstein-Friesian cows (130~140 Kg body weight; n=40) of both sexes, maintained with nutritionally balanced diet and under constant conditions, were used. The left anterior descending coronary artery (LAD) was occluded by ligation with 4-0 silk snare for 20 minutes and recanalized by release of the ligation under continuous intravenous drip anesthesia with sodium pentobarbital (0.15 mg/Kg/min). Drill biopsies of the risk area (antero-lateral wall) were performed at just on reperfusion (5 minutes), 1-, 2-, 3-, 6-, 12-hours after recanalization, and at 1-hour assist (only with mechanical respiration and fluid replacement) after 12-hour recanalization. The materials were subdivided into subepicardial and subendocardial tissues. Tissue samples were examined with a transmission electron microscope (Philips EM 300) at the accelerating voltage of 60 KeV. RESULTS: After a 20-minute ligation of the LAD, myocytes showed slight to moderate degree of ultrastructural changes including subsarcolemmal bleb formation, loss of nuclear matrix, clumping of chromatin and margination, mitochondrial destruction, and contracture of sarcomeres. However, microvascular structures were relatively well preserved. After 1-hour reperfusion, nuclear and mitochondrial matrices reappeared and intravascular plugging by polymorphonuclear leukocytes or platelets was observed. However, nucleoli and intramitochondrial granules reappeared within 3 hours of reperfusion and a large number of myocytes were recovered progressively within 6 hours of reperfusion. Recovery was apparent in the subepicardial myocytes and there were no distinct changes in the ultrastructure except narrowed lumen of the microvessels in the later period of reperfusion. CONCLUSIONS: It is likely that the ischemic myocardium could not be salvaged without adequate restoration of coronary flow and that the microvasculature is more resistant to reversible period of ischemia than subendocardium and subepicardium. Therefore, thrombolysis and/or angioplasty may be a rational method of therapy for coronarogenic myocardial ischemia. However, it may take a relatively longer period of time to recover from ischemic insult and reperfusion injury should be considered.


Subject(s)
Anesthesia , Angioplasty , Biopsy , Blister , Body Weight , Cell Death , Chromatin , Contracture , Coronary Vessels , Diet , Heart , Infusions, Intravenous , Ischemia , Ligation , Microvessels , Muscle Cells , Myocardial Ischemia , Myocardium , Neutrophils , Nuclear Matrix , Pentobarbital , Reperfusion Injury , Reperfusion , Respiration , Sarcomeres , Silk , SNARE Proteins , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL