Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Schistosomiasis Control ; (6): 346-352, 2021.
Article in Chinese | WPRIM | ID: wpr-886757

ABSTRACT

Objective To investigate the population dynamics and Echinococcus infections in small rodents around human settlement in Yushu City, Qinghai Province. Methods Rodents were captured using the mouse trap method in pastures from Batang Township and Longbao Township of Yushu City, Qinghai Province on May, August and October, 2018. The body weight and snout-vent length of all captured rodents were measured, and the species was identified according to the rodent morphology. Genomic DNA was extracted from rodent liver specimens and lesion specimens, and the mitochondrial cox1 gene of Echinococcus was amplified using PCR assay for identification of parasite species. In addition, the tissue specimens positive for PCR assay were sampled for pathological examinations. The prevalence of Echinococcus infections was estimated in rodents, and a phylogenetic tree was created based on Echinococcus cox1 gene sequences. Results A total of 285 small rodents were captured, including 143 Ochotona curzoniae (50.2%), 141 Lasiopodomys fuscus (49.5%), and 1 Neodon irene (0.3%), and there was a remarkable variation in habitat selection among these three rodent species. The number of L. fuscus correlated positively with vegetation coverage (r = 0.350, P = 0.264), with the greatest number seen in August, and the number of O. curzoniae negatively with vegetation coverage (r = −0.371, P = 0.235), with the highest number seen in August and the lowest number in May. The female/male ratios of O. curzoniae and voles were 1:0.96 and 0.82:1, respectively. The body weight (r = 0.519, P < 0.01) and snout-vent length (r = 0.578, P < 0.01) of O. curzoniae showed a tendency towards a rise with month, while the body weight (r = −0.401, P < 0.01) and snout-vent length (r = −0.570, P < 0.01) of voles presented a tendency towards a reduction with month. No Echinococcus infection was detected in voles, while 2.1% prevalence of E. shiquicus infection was seen in O. curzoniae. Phylogenetic analysis revealed consistent sequences of cox1 gene from E. shiquicus in Yushu City of Qinghai Province and Shiqu County, Ganzi Tibetan Autonomous Prefecture of Sichuan Province. Conclusions The small rodents around the human settlement in Yushu City of Qinghai Province mainly include O. curzoniae and L. fuscus, with the greatest numbers seen in May and August, respectively. Following the concerted efforts for echinococcosis control, the prevalence of Echinococcus infections is low in small rodents around the human settlement in Yushu City; however, there is still a risk of echinococcosis transmission.

2.
Chinese Journal of Schistosomiasis Control ; (6): 168-173, 2020.
Article in Chinese | WPRIM | ID: wpr-821628

ABSTRACT

Objective To establish a rapid nucleic acid detection technique for identification of Echinococcus multilocularis based on the recombinase aided isothermal amplification assay (RAA) and assess its diagnostic efficiency. Methods The mitochondrial gene sequence of E. multilocularis (GenBank accession number: AB018440) was used as a target sequence. The primers were designed according to the RAA reaction principle and synthesized, and RAA was performed using the generated primers. E. multilocularis genomic DNA at various concentrations and the pMD19-T (Simple) vector containing various copies of the target gene fragment were amplified using RAA to evaluate its sensitivity for detection of E. multilocularis, and RAA was em- ployed to detect the genomic DNA of E. granulosus G1 genotype, Taenia saginata, T. asiatica, T. multiceps, Dipylidium caninum, Toxocara canis, Trichuris trichiura, Giardia lamblia, Fasciola hepatica, Paragonimus westermani, Fasciola gigantica and Clonorchis sinensis to evaluate its specificity. In addition, the optimized RAA was employed to detect nine tissue specimens of E. granulosus-infected animals, 3 fecal samples from E. granulosus-infected dogs and 2 fecal samples from field infected dogs to examine its reliability and feasibility. Results The established RAA was able to detect the specific target gene fragment of E. multilocularis within 40 min. The lowest detect limit of RAA was 10 pg if E. multilocularis genomic DNA served as a template. If the re- combinant plasmid was used as a template, the minimally detectable copy number of RAA was 104. In addition, RAA was nega- tive for the genomic DNA of E. granulosus G1 genotype, T. saginata, T. asiatica, T. multiceps, D. caninum, T. canis, T. trichiura, G. lamblia, F. hepatica, P. westermani, F. gigantica and C. sinensis. The established RAA was positive for detection of the tissue specimens of infected animals, and simulated and field dog stool samples. Conclusion A rapid, sensitive and specific RAA is established, which shows promising values in identification of E. multilocularis and gene diagnosis of alveolar echinococcosis.

SELECTION OF CITATIONS
SEARCH DETAIL