Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 49(6): e5115, 2016. tab, graf
Article in English | LILACS | ID: lil-781415

ABSTRACT

We used biotinylated dextran amine (BDA) to anterogradely label individual axons projecting from primary somatosensory cortex (S1) to four different cortical areas in rats. A major goal was to determine whether axon terminals in these target areas shared morphometric similarities based on the shape of individual terminal arbors and the density of two bouton types: en passant (Bp) and terminaux (Bt). Evidence from tridimensional reconstructions of isolated axon terminal fragments (n=111) did support a degree of morphological heterogeneity establishing two broad groups of axon terminals. Morphological parameters associated with the complexity of terminal arbors and the proportion of beaded Bp vs stalked Bt were found to differ significantly in these two groups following a discriminant function statistical analysis across axon fragments. Interestingly, both groups occurred in all four target areas, possibly consistent with a commonality of presynaptic processing of tactile information. These findings lay the ground for additional work aiming to investigate synaptic function at the single bouton level and see how this might be associated with emerging properties in postsynaptic targets.


Subject(s)
Animals , Male , Nerve Net/anatomy & histology , Presynaptic Terminals , Somatosensory Cortex/anatomy & histology , Anatomy, Cross-Sectional , Biotin/analogs & derivatives , Dextrans , Fluorescent Dyes , Nerve Net/physiology , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Photomicrography , Presynaptic Terminals/physiology , Rats, Wistar , Reference Values , Somatosensory Cortex/physiology
2.
Braz. j. med. biol. res ; 35(12): 1441-1453, Dec. 2002. ilus
Article in English | LILACS | ID: lil-326270

ABSTRACT

In the last five years, a number of detailed anatomical, electrophysiological, optical imaging and simulation studies performed in a variety of non-human species have revealed that the functional organization of callosal connections between primary visual areas is more elaborate than previously thought. Callosal cell bodies and terminals are clustered in columns whose correspondence to features mapped in the visual cortex, such as orientation and ocularity, are starting to be understood. Callosal connections are not restricted to the vertical midline representation nor do they establish merely point-to-point retinotopic correspondences across the hemispheres, as traditionally believed. In addition, anatomical studies have revealed the existence of an ipsilateral component of callosal axons. The aim of this short review is to propose how these new data can be integrated into an updated scheme of the circuits responsible for assembling the primary visual field map


Subject(s)
Animals , Axons , Corpus Callosum , Functional Laterality , Visual Cortex , Visual Fields , Corpus Callosum , Vision, Binocular , Visual Cortex
SELECTION OF CITATIONS
SEARCH DETAIL