Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Acta Physiologica Sinica ; (6): 225-234, 2015.
Article in Chinese | WPRIM | ID: wpr-255953

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation.


Subject(s)
Animals , Mice , Rats , Colforsin , Colon , Metabolism , Cystic Fibrosis Transmembrane Conductance Regulator , Flavones , Physiology , Flavonoids , Pharmacology , Genistein , Intestinal Mucosa , Metabolism
2.
International Journal of Oral Science ; (4): 212-216, 2013.
Article in English | WPRIM | ID: wpr-358171

ABSTRACT

Cellular fibronectin (cFn) is a type of bioactive non-collagen glycoprotein regarded as the main substance used to maintain periodontal attachment. The content of cFn in some specific sites can reflect the progress of periodontitis or peri-implantitis. This study aims to evaluate the expression of cFn messenger RNA (mRNA) in tissues of adult periodontitis and peri-implantitis by real-time fluorescent quantitative polymerase chain reaction (PCR) and to determine its clinical significance. A total of 30 patients were divided into three groups of 10: healthy, adult periodontitis and peri-implantitis. Periodontal tissue biopsies (1 mm×1 mm×1 mm) from each patient were frozen in liquid nitrogen. Total RNA was extracted from these tissues, and the content, purity and integrity were detected. Specific primers were designed according to the sequence, and the mRNA expression levels of cellular fibronectin were detected by real-time PCR. The purity and integrity of the extracted total RNA were both high, and the specificity of amplified genes was very high with no other pollution. The mRNA expression of cFn in the adult periodontitis group (1.526±0.441) was lower than that in the healthy group (3.253±0.736). However, the mRNA expression of cFn in the peri-implantitis group (3.965±0.537) was significantly higher than that in the healthy group. The difference revealed that although both processes were destructive inflammatory reactions in the periodontium, the pathomechanisms were different and the variation started from the transcription level of the cFn gene.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Young Adult , Alveolar Bone Loss , Metabolism , Fibronectins , Genetics , Gingiva , Metabolism , Peri-Implantitis , Metabolism , Periodontal Attachment Loss , Metabolism , Periodontal Index , Periodontal Pocket , Metabolism , Periodontitis , Metabolism , Periodontium , Metabolism , RNA, Messenger , Real-Time Polymerase Chain Reaction , Transcription, Genetic , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL