Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Tissue Engineering Research ; (53): 4075-4081, 2017.
Article in Chinese | WPRIM | ID: wpr-606978

ABSTRACT

BACKGROUND: Human acellular amniotic membrane is a kind of extracellular matrix material with good biocompatibility and biological activity. It has been widely used in various clinical studies because of its low immunogenicity, small rejection and easy preparation.OBJECTIVE: To review the applications of human acellular amniotic membranes in tissue engineering field, such as skin, blood vessel, cornea, cartilage and bone.METHODS: CNKI (from January 2005 to May 2017), CBMdisc (from January 2005 to May 2017), PubMed (from January 1990 to May 2017) and Elsevier (from January 1990 to May 2017) were retrieved for articles addressing the application of human acellular amniotic membrane as a tissue-engineered scaffold in the bone, cartilage, skin, and blood vessels.The keywords were acelluar amniotic membrane, scaffold, material, tissue engineering ECM in Chinese and English, respectively.RESULTS AND CONCLUSION: Human acellular amniotic membrane owns the structure and function of the natural extracellular matrix, which can be combined with stem cells from different sources to differentiate into different tissues and organs, such as bone, cartilage, skin, blood vessel, and corneal tissues. As a tissue-engineered scaffold, human acellular amniotic membrane has good biocompatibility, biodegradability and low immunogenicity, although it has some shortcomings, such as poor strength and post-transplantation rejection reactions. Therefore, the future studies are mainly focused on shortening the adhesion time between cells and scaffolds, increasing the own mechanical strength of human acellular amniotic membrane, optimizing the cell growth microenvironment, and combining human acellular amniotic membrane with other tissue-engineered scaffolds.

SELECTION OF CITATIONS
SEARCH DETAIL