Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Traumatology ; (6): 314-319, 2015.
Article in English | WPRIM | ID: wpr-316792

ABSTRACT

<p><b>OBJECTIVE</b>The 8.12 Tianjin Port Explosion in 2015 caused heavy casualties. Pingjin Hospital, an affiliated college hospital in Tianjin, China participated in the rescue activities. This study aims to analyze the emergency medical response to this event and share experience with trauma physicians to optimize the use of medical resource and reduce mortality of critical patients.</p><p><b>METHODS</b>As a trauma centre at the accident city, our hospital treated 298 patients. We retrospectively analyzed the data of emergency medical response, including injury triage, injury type, ICU patient flow, and medical resource use.</p><p><b>RESULTS</b>There were totally 165 deaths, 8 missing, and 797 non-fatal injuries in this explosion. Our hospital treated 298 casualties in two surges of medical demand. The first one appeared at 1 h after explosion when 147 wounded were received and the second one at 4 h when 31 seriously injured patients were received, among whom 29 were transferred from Tianjin Emergency Center which was responsible for the scene injury triage. After reexamination and triage, only 11 cases were defined as critical ill patients. The over-triage rate reached as high as 62.07%. Seventeen patients underwent surgery and 17 patients were admitted to the intensive care unit.</p><p><b>CONCLUSIONS</b>The present pre-hospital system is incomplete and may induce two surges of medical demand. The first one has a much larger number of casualties than predicted but the injury level is mild; while the second one has less wounded but almost all of them are critical patients. The over-triage rate is high. The hospital emergency response can be improved by an effective re-triage and implementation of a hospital-wide damage control.</p>


Subject(s)
Female , Humans , Male , Blast Injuries , Mortality , Therapeutics , China , Explosions , Health Services Needs and Demand , Hospitals, University , Injury Severity Score , Mass Casualty Incidents , Retrospective Studies , Surge Capacity , Trauma Centers , Triage
2.
Journal of Experimental Hematology ; (6): 334-338, 2013.
Article in Chinese | WPRIM | ID: wpr-332785

ABSTRACT

This study was aimed to explore the effect of NVP-BEZ235, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, on proliferation, cell cycle and colony forming capability of CD34(+)CD38(-) human acute myeloid leukemia (AML) KG1a cells. Flow cytometry was used to detect expression of CD34 and CD38 on the surface of human AML KG1a cells; Trypan blue assay was used to analyze the effect of NVP-BEZ235 at various concentrations on proliferation of KG1a cells; flow cytometry was performed to examine the cell cycle of KG1a cells after NVP-BEZ235 treatment; Soft agar colony-forming experiment was used to detect the colony forming ability of KG1a cells treated with NVP-BEZ235 at various concentrations. The results indicated that the percentage of CD34(+)CD38(-) AML KG1a cells was (98.02 ± 0.72)%. NVP-BEZ235 (0.125 - 1 µmol/L) inhibited the proliferation of KG1a cells in a time-and dose-dependent manner (P < 0.05) and the 50% inhibition concentrations (IC50) at 24 h and 48 h were 0.597 µmol/L and 0.102 µmol/L, respectively. KG1a cells were arrested at G0/G1 phase after treating with 0.5 µmol/L NVP-BEZ235 for 24 h, it was significantly higher than that of control group (83.2 ± 3.80)% vs (43.47 ± 9.60)% (P < 0.05). KG1a cells treated with NVP-BEZ235 (0 - 1 µmol/L) for 14 d and 21 d, the number of colony decreased respectively from (375.67 ± 21.46) per 2500 KG1a cells and (706.33 ± 87.31) per 2500 KG1a cells to 0, with statistical significance (P < 0.05). It is concluded that NVP-BEZ235 can inhibit proliferation and colony-forming capability of CD34(+)CD38(-) human AML KG1a cells.


Subject(s)
Humans , Cell Line, Tumor , Cell Proliferation , Imidazoles , Pharmacology , Leukemia, Myeloid, Acute , Pathology , Neoplastic Stem Cells , Cell Biology , Quinolines , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL