Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 430-438, 2023.
Article in Chinese | WPRIM | ID: wpr-973239

ABSTRACT

ObjectiveArtificial intelligence (AI) full smear automated diatom detection technology can perform forensic pathology drowning diatom detection more quickly and efficiently than human experts.However, this technique was only used in conjunction with the strong acid digestion method, which has a low extraction rate of diatoms. In this study, we propose to use the more efficient proteinase K tissue digestion method (hereinafter referred to as enzyme digestion method) as a diatom extraction method to investigate the generalization ability and feasibility of this technique in other diatom extraction methods. MethodsLung tissues from 6 drowned cadavers were collected for proteinase K ablation and made into smears, and the smears were digitized using the digital image matrix cutting method and a diatom and background database was established accordingly.The data set was divided into training set, validation set and test set in the ratio of 3:1:1, and the convolutional neural network (CNN) models were trained, internally validated, and externally tested on the basis of ImageNet pre-training. ResultsThe results showed that the accuracy rate of the external test of the best model was 97.65 %, and the area where the model features were extracted was the area where the diatoms were located. The best CNN model in practice had a precision of more than 80 % for diatom detection of drowned corpses. ConclusionIt is shown that the AI automated diatom detection technique based on CNN model and enzymatic digestion method in combination can efficiently identify diatoms and can be used as an auxiliary method for diatom detection in drowning identification.

2.
Journal of Forensic Medicine ; (6): 31-39, 2022.
Article in English | WPRIM | ID: wpr-984092

ABSTRACT

OBJECTIVES@#To select four algorithms with relatively balanced complexity and accuracy among deep learning image classification algorithms for automatic diatom recognition, and to explore the most suitable classification algorithm for diatom recognition to provide data reference for automatic diatom testing research in forensic medicine.@*METHODS@#The "diatom" and "background" small sample size data set (20 000 images) of digestive fluid smear of corpse lung tissue in water were built to train, validate and test four convolutional neural network (CNN) models, including VGG16, ResNet50, InceptionV3 and Inception-ResNet-V2. The receiver operating characteristic curve (ROC) of subjects and confusion matrixes were drawn, recall rate, precision rate, specificity, accuracy rate and F1 score were calculated, and the performance of each model was systematically evaluated.@*RESULTS@#The InceptionV3 model achieved much better results than the other three models with a balanced recall rate of 89.80%, a precision rate of 92.58%. The VGG16 and Inception-ResNet-V2 had similar diatom recognition performance. Although the performance of diatom recall and precision detection could not be balanced, the recognition ability was acceptable. ResNet50 had the lowest diatom recognition performance, with a recall rate of 55.35%. In terms of feature extraction, the four models all extracted the features of diatom and background and mainly focused on diatom region as the main identification basis.@*CONCLUSIONS@#Including the Inception-dependent model, which has stronger directivity and targeting in feature extraction of diatom. The InceptionV3 achieved the best performance on diatom identification and feature extraction compared to the other three models. The InceptionV3 is more suitable for daily forensic diatom examination.


Subject(s)
Humans , Algorithms , Deep Learning , Diatoms , Neural Networks, Computer , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL