Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 890-906, 2022.
Article in English | WPRIM | ID: wpr-929333

ABSTRACT

Antrodia cinnamomea is extensively used as a traditional medicine to prevention and treatment of liver cancer. However, its comprehensive chemical fingerprint is uncertain, and the mechanisms, especially the potential therapeutic target for anti-hepatocellular carcinoma (HCC) are still unclear. Using UPLC‒Q-TOF/MS, 139 chemical components were identified in A. cinnamomea dropping pills (ACDPs). Based on these chemical components, network pharmacology demonstrated that the targets of active components were significantly enriched in the pathways in cancer, which were closely related with cell proliferation regulation. Next, HCC data was downloaded from Gene Expression Omnibus database (GEO). The Cancer Genome Atlas (TCGA) and DisGeNET were analyzed by bioinformatics, and 79 biomarkers were obtained. Furtherly, nine targets of ACDP active components were revealed, and they were significantly enriched in PI3K/AKT and cell cycle signaling pathways. The affinity between these targets and their corresponding active ingredients was predicted by molecular docking. Finally, in vivo and in vitro experiments showed that ACDPs could reduce the activity of PI3K/AKT signaling pathway and downregulate the expression of cell cycle-related proteins, contributing to the decreased growth of liver cancer. Altogether, PI3K/AKT-cell cycle appears as the significant central node in anti-liver cancer of A. Cinnamomea.

2.
Chinese Journal of Biotechnology ; (12): 161-169, 2017.
Article in Chinese | WPRIM | ID: wpr-310602

ABSTRACT

Fungal diseases are the main threat to crop yield and quality, often leading to huge economic losses. Chemical fungicides are almost useless to soil-borne and vascular fungal pathogens. The most effective way is crop resistance breeding by using resistance genes. Yet, for plants lacking resistance resources, new approaches are urgently needed for crop protection. Recently, host-induced gene silencing (HIGS) is developed based on the well-known RNA interference, and already effective against viruses and pests. However, it is challenging to validate HIGS in soil-borne fungal pathogens due to uncharacterized and complicated infection processes. Recently, we have made great progresses in revealing the infection structure of Verticillium dahliae, a soil-borne and vascular fungal pathogen that leads to verticillium wilt disease to many crops, including cotton plants. Moreover, we demonstrate that cotton exports endogenous microRNAs to inhibit virulence gene expression in V. dahliae. The most exciting achievement is the successful application of HIGS in cotton plants that confer resistance to V. dahliae. All these results reveal a promising potential for applying HIGS against a wide range of soil-borne fungi.

3.
Chinese Journal of Biotechnology ; (12): 521-530, 2012.
Article in Chinese | WPRIM | ID: wpr-342465

ABSTRACT

The 21-24 nucleotides small RNA that generated from double strands RNA can trigger two types of epigenetic gene silencing in plants. One is Post-Transcriptional Gene Silencing (PTGS), characterized by cleavage of homologous mRNA in cytoplasm. Transcriptional Gene Silencing (TGS) is another one, in which transcription inhibition is obtained through small RNA-directed DNA methylation of homologous promoter region. Here we summarized the relationship and differences between PTGS and TGS, the current achievement in the study of RNA silencing spreading, as well as the discrepancy of exogenous and endogenous gene silencing, and discussed the underlying reasons in the end.


Subject(s)
DNA Methylation , Genetics , Epigenesis, Genetic , Physiology , Genome, Plant , Genetics , Plant Immunity , Genetics , RNA Interference , RNA, Plant , Genetics , RNA, Small Interfering , Genetics , Transcription, Genetic , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL