Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Korean Dental Science ; : 9-18, 2016.
Article in English | WPRIM | ID: wpr-58138

ABSTRACT

PURPOSE: Wnt signaling plays an essential role in the dental epithelium and mesenchyme during tooth morphogenesis. Deletion of the Wntless (Wls) gene in odontoblasts appears to reduce canonical Wnt activity, leading to inhibition of odontoblast maturation. However, it remains unclear if autonomous Wnt ligands are necessary for differentiation of dental pulp cells into odontoblast-like cells to induce reparative dentinogenesis, one of well-known feature of pulp repair to form tertiary dentin. MATERIALS AND METHODS: To analyze the autonomous role of Wls for differentiation of dental pulp cells into odontoblast-like cells, we used primary dental pulp cells from unerupted molars of Wls-floxed allele mouse after infection with adenovirus for Cre recombinase expression to knockout the floxed Wls gene or control GFP expression. The differentiation of dental pulp cells into odontoblast-like cells was analyzed by quantitative real-time polymerase chain reaction. RESULT: Proliferation rate was significantly decreased in dental pulp cells with Cre expression for Wls knockout. The expression levels of Osterix (Osx), runt-related transcription factor 2 (Runx2), and nuclear factor I-C (Nfic) were all significantly decreased by 0.3-fold, 0.2-fold, and 0.3-fold respectively in dental pulp cells with Wls knockout. In addition, the expression levels of Bsp, Col1a1, Opn, and Alpl were significantly decreased by 0.7-fold, 0.3-fold, 0.8-fold, and 0.6-fold respectively in dental pulp cells with Wls knockout. CONCLUSION: Wnt ligands produced autonomously are necessary for proper proliferation and odontoblastic differentiation of mouse dental pulp cells toward further tertiary dentinogenesis.


Subject(s)
Animals , Mice , Adenoviridae , Alleles , Dental Pulp , Dentin , Dentinogenesis , Epithelium , Ligands , Mesoderm , Molar , Morphogenesis , NFI Transcription Factors , Odontoblasts , Real-Time Polymerase Chain Reaction , Recombinases , Tooth , Transcription Factors
2.
Experimental & Molecular Medicine ; : e256-2016.
Article in English | WPRIM | ID: wpr-117332

ABSTRACT

Regulation of osteoblast and osteocyte viability is essential for bone homeostasis. Smad4, a major transducer of bone morphogenetic protein and transforming growth factor-β signaling pathways, regulates apoptosis in various cell types through a mitochondrial pathway. However, it remains poorly understood whether Smad4 is necessary for the regulation of osteoblast and osteocyte viability. In this study, we analyzed Smad4Δ(Os) mice, in which Smad4 was subjected to tissue-specific disruption under the control of the 2.3-kb Col1a1 promoter, to understand the functional significance of Smad4 in regulating osteoblast/osteocyte viability during bone formation and remodeling. Smad4Δ(Os) mice showed a significant increase in osteoblast number and osteocyte density in the trabecular and cortical regions of the femur, whereas osteoclast activity was significantly decreased. The proliferation of osteoblasts/osteocytes did not alter, as shown by measuring 5′-bromo-2′deoxyuridine incorporation. By contrast, the percentage of TUNEL-positive cells decreased, together with a decrease in the Bax/Bcl-2 ratio and in the proteolytic cleavage of caspase 3, in Smad4Δ(Os) mice. Apoptosis in isolated calvaria cells from Smad4Δ(Os) mice decreased after differentiation, which was consistent with the results of the TUNEL assay and western blotting in Smad4Δ(Os) mice. Conversely, osteoblast cells overexpressing Smad4 showed increased apoptosis. In an apoptosis induction model of Smad4Δ(Os) mice, osteoblasts/osteocytes were more resistant to apoptosis than were control cells, and, consequently, bone remodeling was attenuated. These findings indicate that Smad4 has a significant role in regulating osteoblast/osteocyte viability and therefore controls bone homeostasis.


Subject(s)
Animals , Mice , Apoptosis , Blotting, Western , Bone Morphogenetic Proteins , Bone Remodeling , Caspase 3 , Femur , Homeostasis , In Situ Nick-End Labeling , Osteoblasts , Osteoclasts , Osteocytes , Osteogenesis , Skull , Transducers
3.
Anatomy & Cell Biology ; : 199-205, 2016.
Article in English | WPRIM | ID: wpr-105517

ABSTRACT

Dentin is the major part of tooth and formed by odontoblasts. Under the influence of the inner enamel epithelium, odontoblasts differentiate from ectomesenchymal cells of the dental papilla and secrete pre-dentin which then undergo mineralization into dentin. Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) signaling is essential for dentinogenesis; however, the precise molecular mechanisms remain unclear. To understand the role of TGF-β/BMP signaling in odontoblast differentiation and dentin formation, we generated mice with conditional ablation of Smad4, a key intracellular mediator of TGF-β/BMP signaling, using Osr2 or OC-Cre mice. Here we found the molars of Osr2(Cre)Smad4 mutant mice exhibited impaired odontoblast differentiation, and normal dentin was replaced by ectopic bone-like structure. In Osr2(Cre)Smad4 mutant mice, cell polarity of odontoblast was lost, and the thickness of crown dentin was decreased in later stage compared to wild type. Moreover, the root dentin was also impaired and showed ectopic bone-like structure similar to Osr2(Cre)Smad4 mutant mice. Taken together, our results suggest that Smad4-dependent TGF-β/BMP signaling plays a critical role in odontoblast differentiation and dentin formation during tooth development.


Subject(s)
Animals , Mice , Cell Polarity , Crowns , Dental Enamel , Dental Papilla , Dentin , Dentinogenesis , Epithelium , Miners , Molar , Odontoblasts , Tooth
SELECTION OF CITATIONS
SEARCH DETAIL