Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
J Biosci ; 2015 Mar; 40 (1): 53-59
Article in English | IMSEAR | ID: sea-162017

ABSTRACT

The effect of Sunphenon and Polyphenon 60 in oxidative stress response, myogenic regulatory factors, inflammatory cytokines, apoptotic and proteolytic pathways on H2O2-induced myotube atrophy was addressed. Cellular responses of H2O2-induced C2C12cells were examined, including mRNA expression of myogenic regulatory factors, such as MyoD and myogenin, inflammatory pathways, such as TNF-α and NF-kB, as well as proteolytic enzymes, such as μ- calpain and m-calpain. The pre-treatment of Sunphenon (50 μg/mL)/Polyphenon 60 (50 μg/mL) on H2O2-treated C2C12 cells significantly down-regulated the mRNA expression of myogenin and MyoD when compared to those treated with H2O2-induced alone. Additionally, the mRNA expression of μ-calpain and m-calpain were significantly (p<0.05) increased in H2O2-treated C2C12 cells, whereas pre-treatment with Sunphenon/Polyphenon significantly down-regulated the above genes, namely μ-calpain and m-calpain. Furthermore, the mRNA expression of TNF-α and NF-kB were significantly increased in H2O2-treated C2C12 cells, while pre-treatment with Sunphenon (50 μg/mL)/ Polyphenon 60 (50 μg/mL) significantly (p<0.05) down-regulated it when compared to the untreated control group. Subsequent analysis of DNA degeneration and caspase activation revealed that Sunphenon (50 μg/mL)/Polyphenon 60 (50 μg/mL) inhibited activation of caspase-3 and showed an inhibitory effect on DNA degradation. From this result, we know that, in stress conditions, μ-calpain may be involved in the muscle atrophy through the suppression of myogenin and MyoD. Moreover, Sunphenon may regulate the skeletal muscle genes/promote skeletal muscle recovery by the up-regulation of myogenin and MyoD and suppression of μ-calpain and inflammatory pathways and may regulate the apoptosis pathways. Our findings suggest that dietary supplementation of Sunphenon might reduce inflammatory events in muscle-associated diseases, such as myotube atrophy.

SELECTION OF CITATIONS
SEARCH DETAIL