Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Sleep Medicine and Psychophysiology ; : 18-26, 2021.
Article in English | WPRIM | ID: wpr-895699

ABSTRACT

Sleep is essential to brain function and mental health. Insomnia and obstructive sleep apnea (OSA) are the two most common sleep disorders, and are major public health concerns. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive method of quantifying neurometabolite concentrations. Therefore, 1H-MRS studies on individuals with sleep disorders may enhance our understanding of the pathophysiology of these disorders. In this article, we reviewed 1H-MRS studies in insomnia and OSA that reported changes in neurometabolite concentrations. Previous studies have consistently reported insomnia-related reductions in γ-aminobutyric acid (GABA) levels in the frontal and occipital regions, which suggest that changes in GABA are important to the etiology of insomnia. These results may support the hyperarousal theory that insomnia is associated with increased cognitive and physiological arousal. In addition, the severity of insomnia was associated with low glutamate and glutamine levels. Previous studies of OSA have consistently reported reduced N-acetylaspartate (NAA) levels in the frontal, parietooccipital, and temporal regions. In addition, OSA was associated with increased myo-inositol levels. These results may provide evidence that intermittent hypoxia induced by OSA may result in neuronal damage in the brain, which can be related to neurocognitive dysfunction in patients with OSA. The current review summarizes findings related to neurochemical changes in insomnia and OSA. Future well-designed studies using 1H-MRS have the potential to enhance our understanding of the pathophysiology of sleep disorders including insomnia and OSA.

2.
Sleep Medicine and Psychophysiology ; : 18-26, 2021.
Article in English | WPRIM | ID: wpr-903403

ABSTRACT

Sleep is essential to brain function and mental health. Insomnia and obstructive sleep apnea (OSA) are the two most common sleep disorders, and are major public health concerns. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive method of quantifying neurometabolite concentrations. Therefore, 1H-MRS studies on individuals with sleep disorders may enhance our understanding of the pathophysiology of these disorders. In this article, we reviewed 1H-MRS studies in insomnia and OSA that reported changes in neurometabolite concentrations. Previous studies have consistently reported insomnia-related reductions in γ-aminobutyric acid (GABA) levels in the frontal and occipital regions, which suggest that changes in GABA are important to the etiology of insomnia. These results may support the hyperarousal theory that insomnia is associated with increased cognitive and physiological arousal. In addition, the severity of insomnia was associated with low glutamate and glutamine levels. Previous studies of OSA have consistently reported reduced N-acetylaspartate (NAA) levels in the frontal, parietooccipital, and temporal regions. In addition, OSA was associated with increased myo-inositol levels. These results may provide evidence that intermittent hypoxia induced by OSA may result in neuronal damage in the brain, which can be related to neurocognitive dysfunction in patients with OSA. The current review summarizes findings related to neurochemical changes in insomnia and OSA. Future well-designed studies using 1H-MRS have the potential to enhance our understanding of the pathophysiology of sleep disorders including insomnia and OSA.

3.
Journal of the Korean Society of Biological Therapies in Psychiatry ; (3): 116-126, 2020.
Article | WPRIM | ID: wpr-836404

ABSTRACT

Transcranial direct current stimulation (tDCS) is a non-invasive and effective neuromodulatory technique to modulate cortical activities by applying 1 to 2 milliamps electric current. The use of tDCS to enhance cognitive function such as executive function and memory has attracted much attention in recent years, and a lot of studies have been carried out to identify neural mechanisms underlying cognitive enhancement effects of tDCS. In this review, we discussed the previous neuroimaging studies on applications of tDCS for cognitive enhancement using functional magnetic resonance imaging (fMRI). Previous tDCS studies for neurological or psychiatric conditions and elderly individuals suggested that cognitive enhancement effects of tDCS were associated with normalizing aberrant brain networks and activities related to pathophysiology. Moreover, tDCS-induced cognitive enhancement in healthy individuals was associated with functional changes in brain activations and network connectivity. Furthermore, cognitive enhancement effects of tDCS were varied depending on the neurological structure and functional characteristics between individuals. The current review may provide critical insights into functional activity and connectivity of the brain regarding cognitive enhancement effects of tDCS, which could give direction for further studies on identifying the specific neural mechanisms and clinical strategies of tDCS.

SELECTION OF CITATIONS
SEARCH DETAIL