Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
International Journal of Stem Cells ; : 221-228, 2021.
Article in English | WPRIM | ID: wpr-891029

ABSTRACT

Background and Objectives@#Hypoxia is frequently used to enhance stem cell function. However, the optimal level of hypoxia for growth and function of human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) is yet to be determined. The purpose of this study was to find the optimal level of hypoxia for hES-MSCs and characteristics of hES-MSCs cultured under these optimal hypoxic conditions. @*Methods@#and Results: Cell viability and changes in the morphology of hES-MSCs were determined through cell proliferation and CCK-8 assay. The hES-MSCs were preconditioned under various hypoxic conditions (0.5∼5% O2 and 24∼72 h). The expression of cytokines in each culture condition was compared using cytokine array analysis. The morphology of hES-MSCs did not change under various hypoxic culture conditions. hES-MSCs viability after 48 h incubation in 2% O2condition was higher than that in normoxic condition. HIF1α expression was increased up to six folds after 48 h of hypoxic preconditioning. HIF1α expression in hES-MSCs peaked after 48 h of incubation in 1% O2 condition. The expressions of PDGF-BB, IGFBP-6, VEGF-A, and angiogenin were increased after hES-MSCs were incubated for 48 h in 2% O2 condition. @*Conclusions@#The hES-MSCs viability and expressions of PDGF-BB, IGFBP-6, VEGF-A, and angiogenin increased after 48 h incubation in 2% O2 condition.

2.
International Journal of Stem Cells ; : 221-228, 2021.
Article in English | WPRIM | ID: wpr-898733

ABSTRACT

Background and Objectives@#Hypoxia is frequently used to enhance stem cell function. However, the optimal level of hypoxia for growth and function of human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) is yet to be determined. The purpose of this study was to find the optimal level of hypoxia for hES-MSCs and characteristics of hES-MSCs cultured under these optimal hypoxic conditions. @*Methods@#and Results: Cell viability and changes in the morphology of hES-MSCs were determined through cell proliferation and CCK-8 assay. The hES-MSCs were preconditioned under various hypoxic conditions (0.5∼5% O2 and 24∼72 h). The expression of cytokines in each culture condition was compared using cytokine array analysis. The morphology of hES-MSCs did not change under various hypoxic culture conditions. hES-MSCs viability after 48 h incubation in 2% O2condition was higher than that in normoxic condition. HIF1α expression was increased up to six folds after 48 h of hypoxic preconditioning. HIF1α expression in hES-MSCs peaked after 48 h of incubation in 1% O2 condition. The expressions of PDGF-BB, IGFBP-6, VEGF-A, and angiogenin were increased after hES-MSCs were incubated for 48 h in 2% O2 condition. @*Conclusions@#The hES-MSCs viability and expressions of PDGF-BB, IGFBP-6, VEGF-A, and angiogenin increased after 48 h incubation in 2% O2 condition.

3.
Journal of Korean Medical Science ; : e14-2019.
Article in English | WPRIM | ID: wpr-719583

ABSTRACT

BACKGROUND: The heterogeneity of histological findings in preclinical diet-induced nonalcoholic fatty liver disease (NAFLD) animal models is highly challenging. Here, we aimed to evaluate the feasibility and stability of repeated liver biopsy in NAFLD animal models. METHODS: Heterogeneity of diet-induced NAFLD was evaluated at different time points in 52 high-fat diet (HFD), 35 methionine choline-deficiency diet (MCD), and 166 western diet (WD) induced NAFLD mice. Serial liver biopsies (left lateral, right medial, and left medial lobes) were performed monthly for up to 3 months. Mortality rates and changes in food intake, body weight, and liver enzymes were assessed. RESULTS: At 12 weeks, of the HFD animals, 14% and 30% did not develop steatosis and lobular inflammation, respectively; of the MCD animals, 7% did not develop lobular inflammation; and of the WD animals, 14% and 51% did not develop steatosis and lobular inflammation, respectively. The mortality rate of repeated liver biopsy was 1.62% (2/123 mice died). Repeated liver biopsy can be used to trace disease progression. Although body weight, food intake, and liver enzymes slightly changed after biopsy, all recovered within a week. Repeated liver biopsy did not affect the degrees of inflammation and steatosis of the other liver lobes. CONCLUSION: The diet-induced NAFLD models were quite heterogeneous. Our results suggest that the repeated liver biopsy before treatment was applicable and stable in this NAFLD animal study.


Subject(s)
Animals , Mice , Biopsy , Body Weight , Diet , Diet, High-Fat , Diet, Western , Disease Progression , Eating , Inflammation , Liver , Methionine , Models, Animal , Mortality , Non-alcoholic Fatty Liver Disease , Population Characteristics
4.
Gut and Liver ; : 450-460, 2019.
Article in English | WPRIM | ID: wpr-763854

ABSTRACT

BACKGROUND/AIMS: For the clinical application of stem cell therapy, functional enhancement is needed to increase the survival rate and the engraftment rate. The purpose of this study was to investigate functional enhancement of the paracrine effect using stem cells and hepatocyte-like cells and to minimize stem cell homing by using a scaffold system in a liver disease model. METHODS: A microporator was used to overexpress Foxa2 in adipose tissue-derived stem cells (ADSCs), which were cultured in a poly(lactic-co-glycolic acid) (PLGA) scaffold. Later, the ADSCs were cultured in hepatic differentiation medium for 2 weeks by a 3-step method. For in vivo experiments, Foxa2-overexpressing ADSCs were loaded in the scaffold, cultured in hepatic differentiation medium and later were implanted in the dorsa of nude mice subjected to acute liver injury (thioacetamide intraperitoneal injection). RESULTS: Foxa2-overexpressing ADSCs showed greater increases in hepatocyte-specific gene markers (alpha fetoprotein [AFP], cytokeratin 18 [CK18], and albumin), cytoplasmic glycogen storage, and cytochrome P450 expression than cells that underwent the conventional differentiation method. In vivo experiments using the nude mouse model showed that 2 weeks after scaffold implantation, the mRNA expression of AFP, CK18, dipeptidyl peptidase 4 (CD26), and connexin 32 (CX32) was higher in the Foxa2-overexpressing ADSCs group than in the ADSCs group. The Foxa2-overexpressing ADSCs scaffold treatment group showed attenuated liver injury without stem cell homing in the thioacetamide-induced acute liver injury model. CONCLUSIONS: Foxa2-overexpressing ADSCs applied in a scaffold system enhanced hepatocyte-like differentiation and attenuated acute liver damage in an acute liver injury model without homing effects.


Subject(s)
Animals , Mice , Cytochrome P-450 Enzyme System , Cytoplasm , Dipeptidyl Peptidase 4 , Fetal Proteins , Glycogen , Keratin-18 , Liver Diseases , Liver Failure, Acute , Liver , Mesenchymal Stem Cells , Methods , Mice, Nude , RNA, Messenger , Stem Cells , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL