Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
2.
Experimental & Molecular Medicine ; : 586-593, 2012.
Article in English | WPRIM | ID: wpr-14964

ABSTRACT

Reactive oxygen species (ROS) contribute to the development of a number of neuronal diseases including ischemia. DJ-1, also known to PARK7, plays an important role in transcriptional regulation, acting as molecular chaperone and antioxidant. In the present study, we investigated whether DJ-1 protein shows a protective effect against oxidative stress-induced neuronal cell death in vitro and in ischemic animal models in vivo. To explore DJ-1 protein's potential role in protecting against ischemic cell death, we constructed cell permeable Tat-DJ-1 fusion proteins. Tat-DJ-1 protein efficiently transduced into neuronal cells in a dose- and time-dependent manner. Transduced Tat-DJ-1 protein increased cell survival against hydrogen peroxide (H2O2) toxicity and also reduced intracellular ROS. In addition, Tat-DJ-1 protein inhibited DNA fragmentation induced by H2O2. Furthermore, in animal models, immunohistochemical analysis revealed that Tat-DJ-1 protein prevented neuronal cell death induced by transient forebrain ischemia in the CA1 region of the hippocampus. These results demonstrate that transduced Tat-DJ-1 protein protects against cell death in vitro and in vivo, suggesting that the transduction of Tat-DJ-1 may be useful as a therapeutic agent for ischemic injuries related to oxidative stress.


Subject(s)
Animals , Mice , Rats , Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , CA1 Region, Hippocampal/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Gerbillinae , Intracellular Signaling Peptides and Proteins/administration & dosage , Lipid Peroxidation , Malondialdehyde/metabolism , Neuroprotective Agents/administration & dosage , Oncogene Proteins/administration & dosage , Oxidative Stress , Prosencephalon/drug effects , Recombinant Fusion Proteins/administration & dosage , tat Gene Products, Human Immunodeficiency Virus/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL