Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Blood Research ; : 41-48, 2018.
Article in English | WPRIM | ID: wpr-713630

ABSTRACT

BACKGROUND: Korean National Health Insurance reimburses factor VIII (FVIII) and factor IX (FIX) clotting factor concentrate (CFC) infusions to discrepant activity levels, allowing elevation of FVIII activity to 60 IU/dL and FIX to 40 IU/dL. We aimed to assess hemostatic response to these target levels using global hemostatic assays. METHODS: We enrolled 34 normal healthy men, 34 patients with hemophilia A, and 36 with hemophilia B, with residual factor activity of 3 IU/dL or less and without inhibitors. Patients with hemophilia A and B received injected CFCs according to reimbursement guidelines. Fifteen minutes after injection, we assessed hemostatic response with global hemostatic assays: thrombin generation assay (TGA), thromboelastography (TEG), and clot waveform analysis (CWA). RESULTS: Normal healthy men and patients with hemophilia A and B were 36.7, 37.2, and 35.1 years old, respectively. FVIII and recombinant FIX concentrate doses were 28.8 IU/kg and 43.6 IU/kg. Post-infusion FVIII activity rose from 0.5 IU/dL to 69.4 IU/dL, while FIX activity rose from 1.4 IU/dL to 46.8 IU/dL. Post-infusion peak thrombin concentrations in hemophilia A and B were 116.6 nM/L and 76.4 nM/L (P < 0.001). Post-infusion endogenous thrombin potential (ETP) in hemophilia A and B was 1349.8 nM/min and 915.6 nM (P < 0.001). TEG index of hemophilia A and B was 0.11 and −0.51 (P=0.006). CONCLUSION: Current reimbursed doses for FIX concentrates are insufficient to achieve hemostatic responses comparable to those after reimbursed doses for FVIII concentrates in terms of peak thrombin concentration, ETP, and TEG index.


Subject(s)
Humans , Male , Factor IX , Factor VIII , Hemophilia A , Hemophilia B , National Health Programs , Thrombelastography , Thrombin
2.
Experimental & Molecular Medicine ; : e250-2016.
Article in English | WPRIM | ID: wpr-78630

ABSTRACT

RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the potential involvement of RSK2 in the regulation of mitotic progression. Interestingly, depletion of RSK2, but not RSK1, caused the accumulation of mitotic cells. Time-lapse analysis revealed that mitotic duration, particularly the duration for metaphase-to-anaphase transition was prolonged in RSK2-depleted cells, suggesting activation of spindle assembly checkpoint (SAC). Indeed, more BubR1 (Bub1-related kinase) was present on metaphase plate kinetochores in RSK2-depleted cells, and depletion of BubR1 abolished the mitotic accumulation caused by RSK2 depletion, confirming BubR1-dependent SAC activation. Along with the shortening of inter-kinetochore distance, these data suggested that weakening of the tension across sister kinetochores by RSK2 depletion led to the activation of SAC. To test this, we analyzed the RSK2 effects on the stability of kinetochore–microtubule interactions, and found that RSK2-depleted cells formed less kinetochore–microtubule fibers. Moreover, RSK2 depletion resulted in the decrease of basal level of microtubule as well as an irregular distribution of mitotic spindles, which might lead to observed several mitotic progression defects such as increase in unaligned chromosomes, defects in chromosome congression and a decrease in pole-to-pole distance in these cells. Taken together, our data reveal that RSK2 affects mitotic progression by regulating the distribution, basal level and the stability of mitotic spindles.


Subject(s)
Humans , Kinetochores , M Phase Cell Cycle Checkpoints , Metaphase , Microtubules , Phosphotransferases , Protein Kinases , Ribosomal Protein S6 Kinases , Ribosomal Protein S6 Kinases, 90-kDa , Siblings , Spindle Apparatus
3.
Experimental & Molecular Medicine ; : 111-120, 2011.
Article in English | WPRIM | ID: wpr-186262

ABSTRACT

Aberrant activation of hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, Met, is involved in the development and progression of many human cancers. In the cell-based screening assay, (-)epigallocatechin-3-gallate (EGCG) inhibited HGF/SF-Met signaling as indicated by its inhibitory activity on HGF/SF-induced cell scattering and uPA activation (IC50 = 15.8 microg/ml). Further analysis revealed that EGCG at low doses specifically inhibited HGF/SF-induced tyrosine phosphorylation of Met but not epidermal growth factor (EGF)-induced phosphorylation of EGF receptor (EGFR). On the other hand, high-dose EGCG decreased both Met and EGFR proteins. We also found that EGCG did not act on the intracellular portion of Met receptor tyrosine kinase, i.e., it inhibited InlB-dependent activation of Met but not NGF-induced activation of Trk-Met hybrid receptor. This inhibition decreased HGF-induced migration and invasion by parental or HGF/SF-transfected B16F10 melanoma cells in vitro in either a paracrine or autocrine manner. Furthermore, EGCG inhibited the invasion/metastasis of HGF/SF-transfected B16F10 melanoma cells in mice. Our data suggest the possible use of EGCG in human cancers associated with dysregulated paracrine or autocrine HGF/SF-Met signaling.


Subject(s)
Animals , Female , Humans , Mice , Autocrine Communication/drug effects , Catechin/analogs & derivatives , Cell Line, Tumor , Cell Movement/drug effects , Hepatocyte Growth Factor , Mice, Inbred BALB C , Neoplasms, Experimental/metabolism , Paracrine Communication/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Receptors, Growth Factor/antagonists & inhibitors , Signal Transduction
4.
Experimental & Molecular Medicine ; : 270-279, 2010.
Article in English | WPRIM | ID: wpr-164518

ABSTRACT

Wound healing requires re-epithelialization from the wound margin through keratinocyte proliferation and migration, and some growth factors are known to influence this process. In the present study, we found that the co-treatment with hapatocyte growth factor (HGF) and TGF-beta1 resulted in enhanced migration of HaCaT cells compared with either growth factor alone, and that N-acetylcysteine, an antioxidant agent, was the most effective among several inhibitors tested, suggesting the involvement of reactive oxygen species (ROS). Fluorescence-activated cell sorter analysis using 2',7'-dichlorofluorescein diacetate (DCF-DA) dye showed an early (30 min) as well as a late (24 h) increase of ROS after scratch, and the increase was more prominent with the growth factor treatment. Diphenyliodonium (DPI), a potent inhibitor of NADPH oxidase, abolished the increase of ROS at 30 min, followed by the inhibition of migration, but not the late time event. More precisely, gene knockdown by shRNA for either Nox-1 or Nox-4 isozyme of gp91phox subunit of NADPH oxidase abolished both the early time ROS production and migration. However, HaCaT cell migration was not enhanced by treatment with H2O2. Collectively, co-treatment with HGF and TGF-beta1 enhances keratinocyte migration, accompanied with ROS generation through NADPH oxidase, involving Nox-1 and Nox-4 isozymes.

SELECTION OF CITATIONS
SEARCH DETAIL