Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add filters








Year range
1.
Laboratory Animal Research ; : 90-97, 2021.
Article in English | WPRIM | ID: wpr-902648

ABSTRACT

Background@#Aging is one of major causes triggering neurophysiological changes in many brain substructures, including the hippocampus, which has a major role in learning and memory. Thioredoxin (Trx) is a class of small redox proteins. Among the Trx family, Trx2 plays an important role in the regulation of mitochondrial membrane potential and is controlled by TrxR2. Hitherto, age-dependent alterations in Trx2 and TrxR2 in aged hippocampi have been poorly investigated. Therefore, the aim of this study was to examine changes in Trx2 and TrxR2 in mouse and rat hippocampi by age and to compare their differences between mice and rats. @*Results@#Trx2 and TrxR2 levels using Western blots in mice were the highest at young age and gradually reduced with time, showing that no significant differences in the levels were found between the two subfields. In rats, however, their expression levels were the lowest at young age and gradually increased with time. Nevertheless, there were no differences in cellular distribution and morphology in their hippocampi when it was observed by cresyl violet staining. In addition, both Trx2 and TrxR2 immunoreactivities in the CA1-3 fields were mainly shown in pyramidal cells (principal cells), showing that their immunoreactivities were altered like changes in their protein levels. @*Conclusions@#Our current findings suggest that Trx2 and TrxR2 expressions in the brain may be different according to brain regions, age and species. Therefore, further studies are needed to examine the reasons of the differences of Trx2 and TrxR2 expressions in the hippocampus between mice and rats.

2.
Laboratory Animal Research ; : 90-97, 2021.
Article in English | WPRIM | ID: wpr-894944

ABSTRACT

Background@#Aging is one of major causes triggering neurophysiological changes in many brain substructures, including the hippocampus, which has a major role in learning and memory. Thioredoxin (Trx) is a class of small redox proteins. Among the Trx family, Trx2 plays an important role in the regulation of mitochondrial membrane potential and is controlled by TrxR2. Hitherto, age-dependent alterations in Trx2 and TrxR2 in aged hippocampi have been poorly investigated. Therefore, the aim of this study was to examine changes in Trx2 and TrxR2 in mouse and rat hippocampi by age and to compare their differences between mice and rats. @*Results@#Trx2 and TrxR2 levels using Western blots in mice were the highest at young age and gradually reduced with time, showing that no significant differences in the levels were found between the two subfields. In rats, however, their expression levels were the lowest at young age and gradually increased with time. Nevertheless, there were no differences in cellular distribution and morphology in their hippocampi when it was observed by cresyl violet staining. In addition, both Trx2 and TrxR2 immunoreactivities in the CA1-3 fields were mainly shown in pyramidal cells (principal cells), showing that their immunoreactivities were altered like changes in their protein levels. @*Conclusions@#Our current findings suggest that Trx2 and TrxR2 expressions in the brain may be different according to brain regions, age and species. Therefore, further studies are needed to examine the reasons of the differences of Trx2 and TrxR2 expressions in the hippocampus between mice and rats.

3.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 424-434, 2019.
Article in English | WPRIM | ID: wpr-776868

ABSTRACT

To examine the effects of Populus tomentiglandulosa (PT) extract on the expressions of antioxidant enzymes and neurotrophic factors in the cornu ammonis 1 (CA1) region of the hippocampus at 5 min after inducing transient global cerebral ischemia (TGCI) in gerbils, TGCI was induced by occlusion of common carotid arteries for 5 min. Before ischemic surgery, 200 mg·kg PT extract was orally administrated once daily for 7 d. We performed neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B staining. Furthermore, we determined in situ production of superoxide anion radical, expression levels of SOD1 and SOD2 as antioxidant enzymes and brain-derived neurotrophic factor (BDNF) and insulin-like growth factor I (IGF-I) as neurotrophic factors. Pretreatment with 200 mg·kg PT extract prevented neuronal death (loss). Furthermore, pretreatment with 200 mg·kg PT extract significantly inhibited the production of superoxide anion radical, increased expressions of SODs and maintained expressions of BDNF and IGF-I. Such increased expressions of SODs were maintained in the neurons after IRI. In summary, pretreated PT extract can significantly increase levels of SODs and protect the neurons against TGCI, suggesting that PT can be a useful natural agent to protect against TGCI.


Subject(s)
Animals , Humans , Male , Brain-Derived Neurotrophic Factor , Genetics , Metabolism , CA1 Region, Hippocampal , Metabolism , Gerbillinae , Insulin-Like Growth Factor I , Genetics , Metabolism , Neuroprotective Agents , Plant Extracts , Populus , Chemistry , Pyramidal Cells , Metabolism , Reperfusion Injury , Drug Therapy , Genetics , Metabolism , Superoxide Dismutase , Genetics , Metabolism , Up-Regulation
4.
Chinese Medical Journal ; (24): 689-695, 2018.
Article in English | WPRIM | ID: wpr-690555

ABSTRACT

<p><b>Background</b>Glehnia littoralis has been used for traditional Asian medicine, which has diverse therapeutic activities. However, studies regarding neurogenic effects of G. littoralis have not yet been considered. Therefore, in this study, we examined effects of G. littoralis extract on cell proliferation, neuroblast differentiation, and the maturation of newborn neurons in the hippocampus of adult mice.</p><p><b>Methods</b>A total of 39 male ICR mice (12 weeks old) were randomly assigned to vehicle-treated and 100 and 200 mg/kg G. littoralis extract-treated groups (n = 13 in each group). Vehicle and G. littoralis extract were orally administrated for 28 days. To examine neurogenic effects of G. littoralis extract, we performed immunohistochemistry for 5-bromo-2-deoxyuridine (BrdU, an indicator for cell proliferation) and doublecortin (DCX, an immature neuronal marker) and double immunofluorescence staining for BrdU and neuronal nuclear antigen (NeuN, a mature neuronal marker). In addition, we examined expressional changes of brain-derived neurotrophic factor (BDNF) and its major receptor tropomyosin-related kinase B (TrkB) using Western blotting analysis.</p><p><b>Results</b>Treatment with 200 mg/kg, not 100 mg/kg, significantly increased number of BrdU-immunoreactive () and DCX cells (48.0 ± 3.1 and 72.0 ± 3.8 cells/section, respectively) in the subgranular zone (SGZ) of the dentate gyrus (DG) and BrdU/NeuN cells (17.0 ± 1.5 cells/section) in the granule cell layer as well as in the SGZ. In addition, protein levels of BDNF and TrkB (about 232% and 244% of the vehicle-treated group, respectively) were significantly increased in the DG of the mice treated with 200 mg/kg of G. littoralis extract.</p><p><b>Conclusion</b>G. littoralis extract promots cell proliferation, neuroblast differentiation, and neuronal maturation in the hippocampal DG, and neurogenic effects might be closely related to increases of BDNF and TrkB proteins by G. littoralis extract treatment.</p>


Subject(s)
Animals , Male , Mice , Apiaceae , Chemistry , Blotting, Western , Brain-Derived Neurotrophic Factor , Metabolism , Cell Differentiation , Cell Proliferation , Dentate Gyrus , Cell Biology , Hippocampus , Cell Biology , Immunohistochemistry , Microtubule-Associated Proteins , Metabolism , Neurogenesis , Neuropeptides , Metabolism , Plant Extracts , Pharmacology , Receptor, trkB , Metabolism
5.
Nutrition Research and Practice ; : 97-104, 2017.
Article in English | WPRIM | ID: wpr-108658

ABSTRACT

BACKGROUND/OBJECTIVE: Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS: AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS: AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS: These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes.


Subject(s)
Humans , Acetaminophen , Angelica , Apoptosis , Asian People , Blotting, Western , Caspase 9 , Ethanol , Flow Cytometry , Functional Food , Hep G2 Cells , Hepatocytes , L-Lactate Dehydrogenase , Liver , Mitochondrial Membranes , Permeability , Stem Cells
6.
Anatomy & Cell Biology ; : 284-292, 2017.
Article in English | WPRIM | ID: wpr-47824

ABSTRACT

The genus Populus (poplar) belonging to the Salicaceae family has been used in traditional medicine, and its several species show various pharmacological properties including antioxidant and anti-inflammatory effects. No study regarding protective effects of Populus species against cerebral ischemia has been reported. Therefore, in the present study, we examined neuroprotective effects of ethanol extract from Populus tomentiglandulosa (Korea poplar) in the hippocampal cornu ammonis (CA1) area of gerbils subjected to 5 minutes of transient global cerebral ischemia. Pretreatment with 200 mg/kg of P. tomentiglandulosa extract effectively protected CA1 pyramidal neurons from transient global cerebral ischemia. In addition, glial fibrillary acidic protein immunoreactive astrocytes and ionized calcium binding adapter molecule 1 immunoreactive microglia were significantly diminished in the ischemic CA1 area by pretreatment with 200 mg/kg of P. tomentiglandulosa extract. Briefly, our results indicate that pretreatment with P. tomentiglandulosa extract protects neurons from transient cerebral ischemic injury and diminish cerebral ischemia-induced reactive gliosis in ischemic CA1 area. Based on these results, we suggest that P. tomentiglandulosa can be used as a potential candidate for prevention of ischemic injury.


Subject(s)
Humans , Astrocytes , Brain Ischemia , Calcium , Ethanol , Gerbillinae , Glial Fibrillary Acidic Protein , Gliosis , Hippocampus , Medicine, Traditional , Microglia , Neurons , Neuroprotective Agents , Populus , Pyramidal Cells , Salicaceae
7.
Laboratory Animal Research ; : 237-243, 2017.
Article in English | WPRIM | ID: wpr-101375

ABSTRACT

Myelin degeneration is one of the characteristics of aging and degenerative diseases. This study investigated age-related alterations in expression of myelin basic protein (MBP) in the hippocampal subregions (dentate gyrus, CA2/3 and CA1 areas) of gerbils of various ages; young (1 month), adult (6 months) and aged (24 months), using western blot and immunohistochemistry. Western blot results showed tendencies of age-related reductions of MBP levels. MBP immunoreactivity was significantly decreased with age in synaptic sites of trisynaptic loops, perforant paths, mossy fibers, and Schaffer collaterals. In particular, MBP immunoreactive fibers in the dentate molecular cell layer (perforant path) was significantly reduced in adult and aged subjects. In addition, MBP immunoreactive mossy fibers in the dentate polymorphic layer and in the CA3 striatum radiatum was significantly decreased in the aged group. Furthermore, we observed similar age-related alterations in the CA1 stratum radiatum (Schaffer collaterals). However, the density of MBP immunoreactive fibers in the dentate granular cell layer and CA stratum pyramidale was decreased with aging. These findings indicate that expression of MBP is age-dependent and tissue specific according to hippocampal layers.


Subject(s)
Adult , Humans , Aging , Blotting, Western , CA1 Region, Hippocampal , Gerbillinae , Hippocampus , Immunohistochemistry , Myelin Basic Protein , Myelin Sheath , Perforant Pathway
8.
Natural Product Sciences ; : 132-138, 2017.
Article in English | WPRIM | ID: wpr-216622

ABSTRACT

This study was designed to investigate the synergetic hepatoprotective effects from a mixture of Korean Red Ginseng and Pueraria Radix on carbon tetrachloride (CCl₄)-induced hepatotoxicity in mice. Liver toxicity was induced by intraperitoneal administration of CCl₄ (0.6 mg/kg) in 12 groups of ICR mice. The negative control group was given CCl₄ without test samples and the normal group was given no treatment. Among treatment groups, the RGAP treatment (Korean Red ginseng acetic acid extract : Pueraria Radix water extract, w/w, 38.4:57.6) decreased CCl₄-elevated ALT (101.60 IU/L), AST (833.89 IU/L), and LDH (365.02 IU/L) levels in the serum, and increased the SOD (11.03 unit/mg protein) and CAT (0.37 unit/mg protein) levels and the LPO levels (59.09 µM/g tissue) more than that in the mice group with CCl₄-induced control group hepatotoxicity. These results suggest that administration of a mixture of Korean Red ginseng and Pueraria Radix decreases CCl₄-induced liver damage and enhances antioxidant activity in mice and imply that administration of the mixture in a certain ratio is more effective than single administration of either Korean Red ginseng or Pueraria Radix alone.


Subject(s)
Animals , Cats , Mice , Acetic Acid , Carbon Tetrachloride , Carbon , Liver , Mice, Inbred ICR , Panax , Pueraria , Water
9.
Chinese Medical Journal ; (24): 1796-1803, 2017.
Article in English | WPRIM | ID: wpr-338850

ABSTRACT

<p><b>BACKGROUND</b>Glehnia littoralis, as a traditional herbal medicine to heal various health ailments in East Asia, displays various therapeutic properties including antioxidant effects. However, neuroprotective effects of G. littoralis against cerebral ischemic insults have not yet been addressed. Therefore, in this study, we first examined its neuroprotective effects in the hippocampus using a gerbil model of transient global cerebral ischemia (TGCI).</p><p><b>METHODS</b>Gerbils were subjected to TGCI for 5 min. G. littoralis extract (GLE; 100 and 200 mg/kg) was administrated orally once daily for 7 days before ischemic surgery. Neuroprotection was examined by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. Gliosis was observed by immunohistochemistry for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1. For neuroprotective mechanisms, immunohistochemistry for superoxide dismutase (SOD) 1 and brain-derived neurotrophic factor (BDNF) was done.</p><p><b>RESULTS</b>Pretreatment with 200 mg/kg of GLE protected pyramidal neurons in the cornu ammonis 1 (CA1) area from ischemic insult area (F = 29.770, P < 0.05) and significantly inhibited activations of astrocytes (F = 22.959, P < 0.05) and microglia (F = 44.135, P < 0.05) in the ischemic CA1 area. In addition, pretreatment with GLE significantly increased expressions of SOD1 (F = 28.561, P < 0.05) and BDNF (F = 55.298, P < 0.05) in CA1 pyramidal neurons of the sham- and ischemia-operated groups.</p><p><b>CONCLUSIONS</b>Our findings indicate that pretreatment with GLE can protect neurons from ischemic insults, and we suggest that its neuroprotective mechanism may be closely associated with increases of SOD1 and BDNF expressions as well as attenuation of glial activation.</p>

10.
Chinese Medical Journal ; (24): 1649-1654, 2015.
Article in English | WPRIM | ID: wpr-231720

ABSTRACT

<p><b>BACKGROUND</b>Oenanthe javanica (O. javanica) has been known to have high antioxidant properties via scavenging reactive oxygen species. We examined the effect of O. javanica extract (OJE) on antioxidant enzymes in the rat liver.</p><p><b>METHODS</b>We examined the effect of the OJE on copper, zinc-superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPx) in the rat liver using immunohistochemistry and western blot analysis. Sprague-Dawley rats were randomly assigned to three groups; (1) normal diet fed group (normal-group), (2) diet containing ascorbic acid (AA)-fed group (AA-group) as a positive control, (3) diet containing OJE-fed group (OJE-group).</p><p><b>RESULTS</b>In this study, no histopathological finding in the rat liver was found in all the experimental groups. Numbers of SOD1, SOD2, CAT, and GPx immunoreactive cells and their protein levels were significantly increased in the AA-fed group compared with those in the normal-group. On the other hand, in the OJE-group, numbers of SOD1, SOD2, CAT, and GPx immunoreactive cells in the liver were significantly increased by about 190%, 478%, 685%, and 346%, respectively, compared with those in the AA-group. In addition, protein levels of SOD1, SOD2, CAT, and GPx in the OJE-group were also significantly much higher than those in the AA-group.</p><p><b>CONCLUSION</b>OJE significantly increased expressions of SOD1 and SOD2, CAT, and GPx in the liver cells of the rat, and these suggests that significant enhancements of endogenous enzymatic antioxidants by OJE might be a legitimate strategy for decreasing oxidative stresses in the liver.</p>


Subject(s)
Animals , Male , Rats , Antioxidants , Metabolism , Ascorbic Acid , Pharmacology , Catalase , Metabolism , Glutathione Peroxidase , Metabolism , Immunohistochemistry , Liver , Metabolism , Oenanthe , Chemistry , Oxidative Stress , Plant Extracts , Pharmacology , Rats, Sprague-Dawley , Superoxide Dismutase , Metabolism
11.
Chinese Medical Journal ; (24): 2932-2937, 2015.
Article in English | WPRIM | ID: wpr-275592

ABSTRACT

<p><b>BACKGROUND</b>Water dropwort (Oenanthe javanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity. In this study, we firstly examined the neuroprotective effect of Oenanthe javanica extract (OJE) in the hippocampal cornus ammonis 1 region (CA1 region) of the gerbil subjected to transient cerebral ischemia.</p><p><b>METHODS</b>Gerbils were established by the occlusion of common carotid arteries for 5 min. The neuroprotective effect of OJE was estimated by cresyl violet staining. In addition, 4 antioxidants (copper, zinc superoxide dismutase [SOD], manganese SOD, catalase, and glutathione peroxidase) immunoreactivities were investigated by immunohistochemistry.</p><p><b>RESULTS</b>Pyramidal neurons in the CA1 region showed neuronal death at 5 days postischemia; at this point in time, all antioxidants immunoreactivities disappeared in CA1 pyramidal neurons and showed in many nonpyramidal cells. Treatment with 200 mg/kg, not 100 mg/kg, OJE protected CA1 pyramidal neurons from ischemic damage. In addition, 200 mg/kg OJE treatment increased or maintained antioxidants immunoreactivities. Especially, among the antioxidants, glutathione peroxidase immunoreactivity was effectively increased in the CA1 pyramidal neurons of the OJE-treated sham-operated and ischemia-operated groups.</p><p><b>CONCLUSION</b>Our present results indicate that treatment with OJE can protect neurons from transient ischemic damage and that the neuroprotective effect may be closely associated with increased or maintained intracellular antioxidant enzymes by OJE.</p>


Subject(s)
Animals , Male , Antioxidants , Metabolism , Therapeutic Uses , Gerbillinae , Glutathione Peroxidase , Metabolism , Hippocampus , Metabolism , Ischemic Attack, Transient , Oenanthe , Chemistry , Plant Extracts , Therapeutic Uses
SELECTION OF CITATIONS
SEARCH DETAIL