Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 423-428, 2017.
Article in English | WPRIM | ID: wpr-727973

ABSTRACT

Vestibular compensation is a recovery process from vestibular symptoms over time after unilateral loss of peripheral vestibular end organs. The aim of the present study was to observe time-dependent changes in long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in the CA1 area of the hippocampus during vestibular compensation. The input-output (I/O) relationships of fEPSP amplitudes and LTP induced by theta burst stimulation to Schaffer's collateral commissural fibers were evaluated from the CA1 area of hippocampal slices at 1 day, 1 week, and 1 month after unilateral labyrinthectomy (UL). The I/O relationships of fEPSPs in the CA1 area was significantly reduced within 1 week post-op and then showed a non-significant reduction at 1 month after UL. Compared with sham-operated animals, there was a significant reduction of LTP induction in the hippocampus at 1 day and 1 week after UL. However, LTP induction levels in the CA1 area of the hippocampus also returned to those of sham-operated animals 1 month following UL. These data suggest that unilateral injury of the peripheral vestibular end organs results in a transient deficit in synaptic plasticity in the CA1 hippocampal area at acute stages of vestibular compensation.


Subject(s)
Animals , Rats , Compensation and Redress , Hippocampus , Long-Term Potentiation , Neuronal Plasticity , Synapses
2.
The Korean Journal of Physiology and Pharmacology ; : 85-90, 2003.
Article in English | WPRIM | ID: wpr-727614

ABSTRACT

The basic mechanism for the excitation of the peripheral vestibular receptors following acute hypotension induced by sodium nitroprusside (SNP) or hemorrhage was investigated in anesthetized rats. Electrical activity of the afferent vestibular nerve was measured after pretreatment with kynurenic acid, an NMDA receptor antagonist. The activity of the vestibular nerve at rest following acute hypotension induced by SNP or simulating hemorrhage was a greater increase than in control animals. The gain of the vestibular nerve with sinusoidal rotation following acute hypotension increased significantly compared to control animals. The acute hypotension induced by SNP or hemorrhage did not change the activity of the afferent vestibular nerve after kynurenic acid injection. These results suggest that acute hypotension produced excitation of the vestibular hair cells via glutamate excitotoxicity in response to ischemia.


Subject(s)
Animals , Rats , Glutamic Acid , Hair Cells, Vestibular , Hemorrhage , Hypotension , Ischemia , Kynurenic Acid , N-Methylaspartate , Nitroprusside , Vestibular Nerve
3.
Journal of the Korean Balance Society ; : 86-94, 2003.
Article in Korean | WPRIM | ID: wpr-150012

ABSTRACT

Spatio-temporal changes on c-Fos protein expression were investigated in vestibular compensation following unilateral labyrinthectomy (UL) induced by injection of arsanilate into the middle ear cavity, chemical labyrinthectomy, or surgical labyrinthectomy in medial vestibular nuclei (MVN), prepositus hypoglossal nuclei (PrH), and inferior olivary nuclei (ION) of Sprague-Dawley rats. Number of spontaneous nystagmus in surgical labyrinthectomy group was 28.2+/-.2 beats/10 sec at post-op 2 hs and the nystagmus disappeared 76 hs after UL. In chemical labyrinthectomy group, spontaneous nystagmus occurred 6 hs after UL and increased up to maximum at 12 hs and disappeared 96 hs. Head deviation in surgical labyrinthectomy group reached a peak at post-op 2 hs and recovered to control level at 144 hs, but chemical labyrinthectomy produced head deviation 24 hs after UL and increased degree of the deviation over time till 144 hs. Expression of c-Fos protein in surgical labyrinthectomy group at post-op 2 hs was 81+/-9.4 cells in ipsilateral MVN to the lesion side and 212+/-0 cells in contralateral MVN, which showed severe asymmetry between bilateral MVN, and decrease of c-Fos protein expression was more in contralateral MVN than in ipsilateral MVN at 6 hs. Chemical labyrinthectomy expressed more c-Fos protein in contralateral MVN 6 hs after UL and in ipsilateral MVN 12 hs after UL, which showed asymmetry of c-Fos protein expression between bilateral MVN. And the expression in ipsilateral MVN of chemical labyrinthectomy group was increased gradually 48 hs after UL and reached a peak at 72 hs. In chemical labyrinthectomy group, expression of c-Fos protein in PrH was increased more in ipsilateral than in contralateral 6 hs after UL and more in contralateral 12 hs after UL, and ION showed more expression of c-Fos protein in contralateral than in ipsilateral 6 hs after UL through 72 hs. These results suggest that the course of vestibular compensation and the temporal expression of c-Fos protein in the brain stem nuclei following UL differed between surgical and chemical labyrinthectomy.


Subject(s)
Animals , Rats , Arsanilic Acid , Brain Stem , Brain , Compensation and Redress , Ear, Middle , Head , Rats, Sprague-Dawley , Vestibular Nuclei
4.
Korean Journal of Urology ; : 520-525, 2002.
Article in Korean | WPRIM | ID: wpr-13675

ABSTRACT

PURPOSE: Premature ejaculation is the most common male sexual disorder, affecting perhaps as many as 75% of men, but its cause has not been well established. The objective of this study is to evaluate whether alcohol injection on the dorsal aspect of the penis can induce a desensitization of penile sensory nerve fiber in rats. MATERIALS AND METHODS: Forty-four male Sprague-Dawley rats were divided into 4 groups. Group I of 4 rats, the control group, did not undergo any procedure. Group II of 8 rats, received only an alcohol injection without electrical stimulation. In group III of 4 rats, only electrical stimulation was performed without alcohol injection. In group IV of 28 rats, all rats received an alcohol injection on the dorsal aspect of the penis, and groups of four rats were sacrificed after electrical stimulation on the glans penis at 1, 2, 4, 7, 10, 14, and 21 days after alcohol injection. Spinal cords were sectioned and processed for immunohistochemical staining for c-Fos protein. RESULTS: No c-Fos protein was detected in the normal control group, and either none or few c-Fos protein positive neurons were seen in the alcohol injection only group. The number of c-Fos protein positive neurons in the electrical stimulation only group was 30.25+/-3.53 cells/section. Four days after alcohol injection, the level of c-Fos protein positive neurons was reduced significantly compared with the control group (p<0.05), and was very close to the control group at 10 days after alcohol injection. CONCLUSIONS: Our study demonstrates that alcohol injection in the dorsal aspect of the penis reduces c-Fos protein positive neurons in the spinal cord segment through desensitization of penile sensory nerve fibers.


Subject(s)
Animals , Humans , Male , Rats , Electric Stimulation , Nerve Fibers , Neural Conduction , Neurons , Penis , Premature Ejaculation , Rats, Sprague-Dawley , Spinal Cord
5.
Journal of the Korean Balance Society ; : 223-234, 2002.
Article in Korean | WPRIM | ID: wpr-160711

ABSTRACT

It is well known that the hippocampal formation requires primary vestibular sensory information to generate spatial memory during self motion in human. The purpose of the present study was to evaluate the effect of unilateral deafferentation of vestibular sensory information on cFos and FosB proteins, a family of immediate early gene-related proteins known as metabolic marker for neural excitation in the hippocampal formation of rats. Adult Sprague-Dawley rats weighing 250 - 300 g were surgically ablated of the peripheral vestibular system in the inner ear and sacrificed at 2, 6, 24, 48, 72 hours after surgical operation. Immunohistochemical staining and Western blot method were adapted to see change in expression of cFos and FosB proteins in the hippocampal formation. A significant change of Fos B immunoreactivity was observed in granular cell layer of the dentate gyrus, CA1 subfield of the hipocampus at 2 hours after unilateral labyrinthectomy. Thereafter, the number of FosB like immunoreactive neurons in these areas increased rapidly, peaked at 48 hours post operatively time. Western blot for FosB protein supported further time-dependent change of FosB revealed by immunohistochemical staining. In addition, granular cell layer showed more significant expression of FosB LI neurons in the caudal dentate gyrus than the rostral one. In contrast, moderate number of cFos LI neurons was detected in polymorphic cell layer of the dentate gyrus, pyramidal cell layer of CA1, and subiculum but not in granular cell layer of the dentate gyrus at 2 hours after labyrinthectomy. The number of cFos LI neurons in the hippocampal formation was rapidly decreased at 6 hours and then returned to basal value 24 hours after operation. These results suggest that unilateral ablation of the peripheral vestibular sensory information elicit spatio-temporal differences of cFos and FosB expressions in the hippocampal formation of rats.


Subject(s)
Adult , Animals , Humans , Rats , Blotting, Western , Dentate Gyrus , Ear, Inner , Hippocampus , Memory , Neurons , Pyramidal Cells , Rats, Sprague-Dawley
6.
The Korean Journal of Physiology and Pharmacology ; : 123-131, 2001.
Article in English | WPRIM | ID: wpr-728226

ABSTRACT

To investigate the effects of electrical stimulation on vestibular compensation, which is the recovery of vestibular symptoms following unilateral labyrinthectomy (UL), intermittent electrical stimulation was applied to the injured vestibular portion in Sprague-Dawley rats. Vestibuloocular and vestibulospinal reflexes, electrical activity and expression of c-Fos protein in medial vestibular nuclei (MVN) were measured with time following UL. Spontaneous nystagmus occurred with frequency of 2.9+/-0.2 beats/sec at 2 hours after UL and disappeared after 72 hours. Electrical stimulation decreased the frequency of nystagmus significantly till 24 hours after UL. Roll head deviation was 107+/-9.7degree at 2 hours after UL and the deviation was maintained till 72 hours, but electrical stimulation decreased the deviation significantly 6 hours after UL. Resting activity of type I neurons in ipsilateral MVN to the injured vestibular side decreased significantly compared with control at 6 and 24 hours after UL, but the activity of type I neurons was recovered to control level by electrical stimulation at 24 hours after UL. Gain of type I neurons induced by sinusoidal rotation of 0.1 Hz decreased significantly till 24 hours after UL, but electrical stimulation restored the activity at 24 hours. The gain of type II neurons decreased significantly at 6 hours after UL, but electrical stimulation restored the activity. Expression of c-Fos protein was asymmetric between bilateral MVN till 24 hours after UL, but the asymmetry disappeared by electrical stimulation 6 hours after UL. These results suggest that electrical stimulation to the injured vestibular portion facilitates vestibular compensation following UL by restoration of symmetry of neuronal activity between bilateral vestibular nuclei resulting from increased activity in ipsilateral vestibular nuclei to the injured side.


Subject(s)
Animals , Rats , Compensation and Redress , Electric Stimulation , Head , Neurons , Rats, Sprague-Dawley , Reflex , Reflex, Vestibulo-Ocular , Vestibular Nuclei
7.
The Korean Journal of Physiology and Pharmacology ; : 603-611, 1997.
Article in English | WPRIM | ID: wpr-727971

ABSTRACT

The motor evoked potentials (MEPs) have been advocated as a method of monitoring the integrity of spinal efferent pathways in various injury models of the central nervous system. However, there were many disputes about origin sites of MEPs generated by transcranial electrical stimulation. The purpose of present study was to investigate the effect of major extrapyramidal motor nuclei such as lateral vestibular nucleus (VN) and medullary reticular nucleus (mRTN) on any components of the MEPs in adult Sprague-Dawley rats. MEPs were evoked by electrical stimulation of the right sensorimotor cortex through a stainless steel screw with 0.5mm in diameter, and recorded epidurally at T9 - T10 spinal cord levels by using a pair of teflon-coated stainless steel wire electrodes with 1mm exposed tip. In order to inject lidocaine and make a lesion, insulated long dental needle with noninsulated tips were placed stereotaxically in VN and mRTN. Lidocaine of 2~3 mul was injected into either VN or mRTN. The normal MEPs were composed of typical four reproducible waves; P1, P2, P3, P4. The first wave (P1) was shown at a mean latency of 1.2 ms, corresponding to a conduction velocity of 67.5 m/sec. The latencies of MEP were shortened and the amplitudes were increased as stimulus intensity was increased. The amplitudes of P1 and P2 were more decreased among 4 waves of MEPs after lidocaine microinjection into mRTN. Especially, the amplitude of P1 was decreased by 50% after lidocaine microinjection into bilateral mRTN. On the other hand, lidocaine microinjection into VN reduced the amplitudes of P3 and P4 than other MEP waves. However, the latencies of MEPs were not changed by lidocaine microinjection into either VN or mRTN. These results suggest that the vestibular and reticular nuclei contribute to partially different role in generation of MEPs elicited by transcranial electrical stimulation.


Subject(s)
Adult , Animals , Humans , Rats , Central Nervous System , Dissent and Disputes , Efferent Pathways , Electric Stimulation , Electrodes , Evoked Potentials, Motor , Hand , Lidocaine , Microinjections , Needles , Rats, Sprague-Dawley , Spinal Cord , Stainless Steel , Vestibular Nucleus, Lateral
SELECTION OF CITATIONS
SEARCH DETAIL