Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Journal of Korean Society of Endocrinology ; : 325-337, 2002.
Article in Korean | WPRIM | ID: wpr-169377

ABSTRACT

No abstract available.

2.
Experimental & Molecular Medicine ; : 451-461, 2002.
Article in English | WPRIM | ID: wpr-13043

ABSTRACT

Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, known as statins, are widely used for primary and secondary prevention of coronary artery atherosclerosis. Pathogenesis of atherosclerosis is multistep processes where transendothelial migration of various leukocytes including monocytes is a crucial step. Interferon-gamma(IFN-gamma) contributes in this process by activating macrophages and T-lymphocytes, and by inducing adhesion molecules in vascular endothelial and smooth muscle cells. In this study we investigated the expression of intercellular cell adhesion molecule- 1 (ICAM-1) in transformed endothelial cell line ECV304 cells as influenced by lovastatin, tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma. Results show that lovastatin suppresses expression of ICAM-1 by inhibiting the IFN-gamma-induced extracellular signal-regulated kinase (ERK) p44/p42-STAT1 signaling pathway. In cells treated with lovastatin and IFN-gamma.ICAM-1 was expressed at a lower level than in cells treated with IFN-gamma alone. However, lovastatin does not reduce TNF-alpha induced expression of ICAM-1. A similar result was observed in cells treated with the MEKK inhibitor PD98059 and IFN-gamma. Cis-acting DNA sequence elements were identified in the 5'-flanking region of the ICAM-1 promoter that mediate inhibition by lovastatin; these sequences map to the IFN-gamma activated site which also binds the STAT1 homodimer. However, lovastatin did not inhibit IFN-gamma-mediated induction of the Y701 phosphorylated form of STAT1. But lovastatin does inhibit the IFN-gamma-mediated phosphorylation of ERK1/ERK2 (T202/Y204) and S727 phosphorylation of STAT1. TNF-alpha does not induce phosphorylation of ERK1/ERK2 and S727 in ECV304 and smooth muscle cells. The results provide the evidences that statins may have beneficial effects by inhibiting IFN-gamma action in atherosclerotic process


Subject(s)
Animals , Rats , Cell Line , DNA-Binding Proteins/metabolism , Endothelium, Vascular/cytology , Gene Expression Regulation/drug effects , Intercellular Adhesion Molecule-1/genetics , Interferon-gamma/antagonists & inhibitors , Lovastatin/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Myocytes, Smooth Muscle/cytology , Phosphorylation/drug effects , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Recombinant Proteins , Trans-Activators/metabolism , Tumor Necrosis Factor-alpha/pharmacology
3.
Journal of Korean Society of Endocrinology ; : 55-69, 2000.
Article in Korean | WPRIM | ID: wpr-123757

ABSTRACT

BACKGROUND: Peroxiredoxins (Prx) play an important role in regulating cellular differentiation and proliferation in several types of mammalian cells. One mechanism for this action involves modulation of hydrogen peroxide (H2O2)-mediated cellular responses. This report examines the expression of Prx I and Prx II in thyroid cells and their roles in eliminating H2O2 produced in response to TSH. METHODS: The expression of Prx-I and Prx-II were quantiated in FRTL-5 after stimulation with Thyroid stimulating hormone (TSH), Forskolin (FSK), Methimazole (MMI) and hydrogen peroxide (H2O2). Transient transfections were carried out with FRTL-5 cells at 80% confluency and 20microgram of pCRprx I and pCRprx II or equivalent molar amounts of the pCR3.1TM basic vector. Transient transfection used an electroporation technique. Intracellular H2O2 was assayed in FRTL-5 cells with a fluorescent dye, 2', 7'-dichlorofluoresceindiacetate (DCFH-DA). Apoptosis of cells were evaluated by using an detection kit (Promega, Inc., Madison, WI). RESULTS: Prx I and Prx II are constitutively expressed in FRTL-5 thyroid cells. Prx I expression, but not Prx II expression, is stimulated by exposure to TSH and H2O2. In addition, methimazole (MMI) induces a high level of Prx I mRNA and protein in these cells. Overexpression of Prx I and Prx II enhance the elimination of H2O2 produced by TSH in FRTL-5 cells. Treatment with 500microM H2O2 causes apoptosis in FRTL-5 cells as evidenced by standard assays of apoptosis (i.e., terminal deoxynucleotidyl transferase deoxyuridine triphosphate-biotin nick end-labeling (TUNEL), BAX expression and PARP cleavage. Overexpression of Prx I and Prx II reduces the amount of H2O2-induced apoptosis measured by these assays. CONCLUSION: These results suggest that Prx I and Prx II are involved in the removal of H2O2 in thyroid cells, and can protect these cells from undergoing apoptosis. These proteins are likely to be involved in the normal physiological response to TSH-induced production of H2O2 in thyroid cells.


Subject(s)
Apoptosis , Colforsin , Deoxyuridine , DNA Nucleotidylexotransferase , Electroporation , Hydrogen Peroxide , Hydrogen , In Situ Nick-End Labeling , Methimazole , Molar , Peroxiredoxins , RNA, Messenger , Thyroid Gland , Thyrotropin , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL