Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Peking University(Health Sciences) ; (6): 770-775, 2021.
Article in Chinese | WPRIM | ID: wpr-942251

ABSTRACT

OBJECTIVE@#To evaluate the effects of femtosecond laser treated microgrooved surface on microscopic topography, phase transformation, and three-points flexural strength of zirconia, and to provide reference for surface microstructure optimization of zirconia implant.@*METHODS@#According to different surface treatment methods, 57 computer aided design/computer aided manufacture (CAD/CAM) zirconia bars (20.0 mm×4.0 mm×1.4 mm) were evenly divided into three groups: sintered group, no treatment after sintering, taken as control; sandblasted group, sandblasted with 110 μm aluminium oxide (Al2O3) after sintering; microgrooved group, femtosecond laser fabricated microgrooves with 50 μm width, 30 μm depth, and 100 μm pitch. Surface microscopic topography was observed with scanning electron microscope (SEM) and 3D laser microscope. Further, surface roughness in each group and microgroove size were measured. Crystal phase was analyzed with X-ray diffraction. Specimens were subjected to three- points flexural strength test, and Weibull distribution was used to analyze their strength characteristics.@*RESULTS@#SEM showed that sintered surface was flat with clear grain structure; sandblasted surface exihibited bumps and holes with sharp margins and irregular shape; microgrooves were regularly aligned without evident defect, and nano-scale particles were observed on the surface inside of the microgrooves. Ra value of microgrooved group [(9.42±0.28)] μm was significantly higher than that of sandblasted group [(1.04±0.03) μm] and sintered group [(0.60±0.04) μm], and there was statistical difference between sandblasted group and sintered group (P < 0.001). The microgroove size was precise with (49.75±1.24) μm width, (30.85±1.02) μm depth, and (100.58±1.94) μm pitch. Crystal phase analysis showed that monoclinic volume fraction of sandblasted group (18.17%) was much higher than that of sintered group (1.55%), while microgrooved group (2.21%) was similar with sintered group. The flexural strength of sandblasted group (986.22±163.25) MPa had no statistical difference with that of sintered group (946.46±134.15) MPa (P=0.847), but the strength in microgrooved group (547.92±30.89) MPa dropped significantly compared with the other two groups (P < 0.001). Weibull modulus of sintered, sandblasted, microgrooved groups were 7.89, 6.98, and 23.46, respectively.@*CONCLUSION@#Femtosecond laser was able to form micro/nanostructured microgrooves on zirconia surface, which deleteriously affected the flexural strength of zirconia.


Subject(s)
Humans , Ceramics , Dental Materials , Flexural Strength , Lasers , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , Yttrium , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL