Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Acta cir. bras ; 37(1): e370101, 2022. ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-1413330

ABSTRACT

Purpose: To investigate the role of peptidyl-prolyl cis/trans isomerase 1 (Pin1) on renal ischemia-reperfusion (I/R) injury and underlying mechanism. Methods: By establishing the in vitro and in vivo models of renal I/R, the role of Pin1 was explored by using molecular assays. Results: In renal I/R, endogenous Pin1 level was up-regulated in I/R-impaired kidney. Suppression of Pin1 with juglone afforded protection against I/R-mediated kidney dysfunction, and reduced I/R-induced endoplasmic reticulum (ER) stress in vivo. Consistent with the in vivo results, repression of Pin1 with juglone or gene knockdown with si-Pin1 conferred cytoprotection and restricted hypoxia/reoxygenation (H/R)-driven ER stress in HK-2 cells. Simultaneously, further study uncovered that Nrf-2/HO-1 signals was the association between Pin1 and ER stress in response to renal I/R. In addition, Nrf-2/HO-1 signal pathway was inactivated after kidney exposed to I/R, as indicated by the down-regulation of Nrf-2/HO-1 levels. Furthermore, inhibition of Pin1 remarkably rescued the inactivation ofNrf-2/HO-1. Conclusions: Pin1 modulated I/R-mediated kidney injury in ER stress manner dependent on Nrf2-HO-1 pathway in I/R injury.


Subject(s)
Animals , Male , Rats , Heme Oxygenase-1 , NF-E2-Related Factor 2/analysis , NIMA-Interacting Peptidylprolyl Isomerase/analysis , Ischemia/veterinary , Reperfusion/veterinary , Rats, Sprague-Dawley , Endoplasmic Reticulum Stress
2.
Acta cir. bras ; 30(9): 617-623, Sep. 2015. tab, ilus
Article in English | LILACS | ID: lil-761499

ABSTRACT

PURPOSE:To investigate the effect of metformin on renal tubular epithelial cell apoptosis and inflammation after kidney ischemia/ reperfusion in rats.METHODS:Eighteen SD rats were randomly divided into three groups: Sham (S), Ischemia/reperfusion (I/R), and Metformin (E). Before establishing the I/R model, group E was administered metformin for three days, while groups S and I/R were administered equal volumes of saline. After three days, a right nephrectomy was performed on all groups, after which the left kidneys of groups E and I/R rats were subjected to 45 min renal ischemia. Renal function, histology, and cell apoptosis were assessed. AMPK, pAMPK, COX-2, and Caspase 3 were also detected.RESULTS:Compared to I/R group, Caspase 3 and COX-2 levels were decreased in group E. COX-2, Caspase3 and pAMPK levels were higher in groups E and I/R than in group S. The pAMPK level of group E was higher than that of I/R group, while COX-2 and caspase 3 were lower in group E than they were in the other groups. There was no significant difference between E and I/R groups in AMPK levels.CONCLUSION:Metformin preconditioning attenuated the inflammation caused by ischemia/reperfusion and inhibited the apoptosis of renal tubular epithelial cells.


Subject(s)
Animals , Male , Apoptosis/drug effects , Epithelial Cells/drug effects , Ischemic Preconditioning/methods , Kidney/blood supply , Kidney/drug effects , Metformin/pharmacology , Reperfusion Injury/prevention & control , AMP-Activated Protein Kinases/analysis , Blood Urea Nitrogen , Blotting, Western , /analysis , Creatinine/blood , /analysis , Immunohistochemistry , Kidney/pathology , Random Allocation , Rats, Sprague-Dawley , Reproducibility of Results , Time Factors
3.
Acta cir. bras ; 30(6): 422-429, 06/2015. graf
Article in English | LILACS | ID: lil-749647

ABSTRACT

PURPOSE: To investigate if oxymatrine pretreatment could ameliorate renal I/R injury induced in rats and explore the possible role of oxymatrine in Nrf2/HO-1 pathway. METHODS: Unilaterally nephrectomized rats were insulted by I/R in their left kidney. Twenty four rats were randomly divided into three groups: sham group, I/R + saline-treated group, I/R + OMT-treated group. Oxymatrine or vehicle solution was administered intraperitoneally injected 60 min before renal ischemia, respectively. Renal function, histology, makers of oxidative stress, cell apoptosis and Nrf2/HO-1 expressions were assessed. RESULTS: Oxymatrine pretreatment exhibited an improved renal functional recovery, alleviated histological injury and oxidative stress, inhibiting tubular apoptosis, and accompanied by upregulated the expression of Nrf2/HO-1 proteins. CONCLUSION: Oxymatrine may attenuate renal ischemia/reperfusion injury, and this renoprotective effect may be through activating the Nrf2/HO-1 pathway. .


Subject(s)
Animals , Male , Alkaloids/pharmacology , Antioxidants/pharmacology , Heme Oxygenase-1/metabolism , Kidney/blood supply , /metabolism , Oxidative Stress/drug effects , Quinolizines/pharmacology , Reperfusion Injury/prevention & control , Alkaloids/therapeutic use , Antioxidants/therapeutic use , Apoptosis/drug effects , Blotting, Western , Disease Models, Animal , Heme Oxygenase-1/analysis , Immunohistochemistry , In Situ Nick-End Labeling , Kidney/pathology , /analysis , Quinolizines/therapeutic use , Random Allocation , Rats, Sprague-Dawley , Reproducibility of Results , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL