Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 114-120, 2024.
Article in Chinese | WPRIM | ID: wpr-1007282

ABSTRACT

ObjectiveTo assess the microstructural involvement of gray matter in recovered COVID-19 patients using Synthetic MRI. MethodsThis study was conducted in 29 recovered COVID-19 patients, including severe group (SG, n=11) and ordinary group (OG, n=18). Healthy volunteers matched by age, sex, BMI and years of education were selected as a healthy control group (HC=23 cases). Each subject underwent synthetic MRI to generate quantitative T1 and T2 maps, and the T1 and T2 maps were segmented into 90 regions of interest (ROIs) using automatic anatomical labeling (AAL) mapping. T1 and T2 values for each ROI were obtained by averaging all voxels within the ROIs. The T1 and T2 values of the 90 brain regions between the three groups were compared. ResultsRelative to HC, the SG had significantly higher T2 values in bilateral orbital superior frontal gyrus, bilateral parahippocampal gyrus, bilateral putamen, bilateral middle temporal gyrus, bilateral Inferior temporal gyrus, left orbital superior frontal gyrus, left orbital inferior frontal gyrus, left gyrus rectus, left anterior cingulate and paracingulate gyri, right median cingulate and paracingulate gyri, left posterior cingulate gyrus, and left supramarginal gyrus (P<0.05); Relative to OG, SG showed significantly increased T2 values in the left rectus gyrus, left parahippocampal gyrus, bilateral middle temporal gyrus, and bilateral inferior temporal gyrus (P<0.05). Relative to HC, the T1 values of SG were significantly increased in bilateral orbital superior frontal gyrus, left rectus gyrus, left anterior cingulate and paracingulate gyri, right posterior cingulate gyrus, left parahippocampal gyrus, left lingual gyrus, left putamen, left thalamus(P<0.05); Relative to OG, the T1 values of SG were significantly higher in the right posterior cingulate gyrus, right calcarine fissure and surrounding cortex, and left putamen (P<0.05). ConclusionsEven after recovering from COVID-19, patients may still have persistent or delayed damage to their brain gray matter structure, which is correlated with the severity of the condition. SyMRI can serve as a sensitive tool to assess the extent of microstructural damage to the central nervous system, aiding in early diagnosis of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL