Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Critical Care Medicine ; (12): 686-690, 2018.
Article in Chinese | WPRIM | ID: wpr-806822

ABSTRACT

Objective@#To investigate the clinical application and effect evaluation of failure mode and effect analysis (FMEA) in the optimization of vascular recanalization in patients with ST-segment elevation myocardial infarction (STEMI).@*Methods@#A total of 389 STEMI patients admitted to the emergency department of the Fifth Central Hospital in Tianjin from January 2014 to January 2015 were served as the control group, and 398 STEMI patients admitted to the chest pain center of the Fifth Central Hospital in Tianjin from January 2016 to October 2017 were served as the experimental group. In the control group, routine emergency treatment was used. At the same time, the intervention room was 24-hour prepared for emergency vascular recanalization. The experimental group used FMEA. Through the usage of FMEA, the main factors those caused the delay in revascularization treatment were determined, and the revascularization process was optimized for these influencing factors, thereby shortening the "criminal" blood vessel opening time of patients. The door-to-balloon dilatation time (D-to-B time), troponin testing time, placement time of the catheterization room, initiation of the catheterization room to balloon dilatation time, and preoperative and 1 week postoperative N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, heart function parameters [left ventricular ejection fraction (LVEF), left ventricular short axis shortening rate (FS), left ventricular end-systolic diameter (LVESD), and left ventricular end-diastolic diameter (LVEDD)] within 1 week, 3 months and 6 months after intervention, and the incidence of main cardiovascular adverse events within 1 month after intervention, hospital mortality, the length of hospital stay, and readmission within 1 year in the patients of two groups were recorded.@*Results@#D-to-B time (minutes: 70.6±3.6 vs. 79.4±8.7), troponin testing time (minutes: 17.1±2.3 vs. 65.2±6.5), placement time of the catheterization room (minutes: 28.9±9.8 vs. 52.3±12.2) and activation of the catheterization room to balloon expansion time (minutes: 47.3±9.3 vs. 65.1±7.2) in the experimental group were significantly shorter than those in the control group (all P < 0.01). The NT-proBNP levels at 1 week after intervention in the two groups were lower than the preoperative levels, slightly lower in the experimental group, but the difference was not statistically significant. There was no significant difference in cardiac function at 1 week and 3 months after intervention between the two groups. The LVEF and FS at 6 months after intervention in the experimental group were significantly higher than those in the control group [LVEF: 0.622±0.054 vs. 0.584±0.076, FS: (38.1±4.3)% vs. (35.4±6.2)%, both P < 0.01], and LVESD and LVEDD were decreased significantly [LVESD (mm): 31.2±3.8 vs. 34.7±4.2, LVEDD (mm): 49.2±5.3 vs. 52.4±5.6, all P < 0.01]. The length of hospital stay in the experimental group was significantly shorter than that in the control group (days: 8.3±3.2 vs. 13.2±6.8, P < 0.01), the incidence of major cardiovascular adverse events within 1 month after intervention [13.6% (54/398) vs. 19.8% (77/389)], hospital mortality [1.8% (7/398) vs. 4.9% (19/389)], and readmission rate within 1 year [9.5% (38/398) vs. 14.5% (56/389)] in the experimental group were significantly lower than those in the control group (all P < 0.05).@*Conclusion@#The usage of FMEA to optimize the vascular recanalization procedure can shorten the emergency treatment time of STEMI patients, reduce the occurrence of adverse events, and improve the prognosis.

2.
Chinese Critical Care Medicine ; (12): 686-690, 2018.
Article in Chinese | WPRIM | ID: wpr-1010846

ABSTRACT

OBJECTIVE@#To investigate the clinical application and effect evaluation of failure mode and effect analysis (FMEA) in the optimization of vascular recanalization in patients with ST-segment elevation myocardial infarction (STEMI).@*METHODS@#A total of 389 STEMI patients admitted to the emergency department of the Fifth Central Hospital in Tianjin from January 2014 to January 2015 were served as the control group, and 398 STEMI patients admitted to the chest pain center of the Fifth Central Hospital in Tianjin from January 2016 to October 2017 were served as the experimental group. In the control group, routine emergency treatment was used. At the same time, the intervention room was 24-hour prepared for emergency vascular recanalization. The experimental group used FMEA. Through the usage of FMEA, the main factors those caused the delay in revascularization treatment were determined, and the revascularization process was optimized for these influencing factors, thereby shortening the "criminal" blood vessel opening time of patients. The door-to-balloon dilatation time (D-to-B time), troponin testing time, placement time of the catheterization room, initiation of the catheterization room to balloon dilatation time, and preoperative and 1 week postoperative N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, heart function parameters [left ventricular ejection fraction (LVEF), left ventricular short axis shortening rate (FS), left ventricular end-systolic diameter (LVESD), and left ventricular end-diastolic diameter (LVEDD)] within 1 week, 3 months and 6 months after intervention, and the incidence of main cardiovascular adverse events within 1 month after intervention, hospital mortality, the length of hospital stay, and readmission within 1 year in the patients of two groups were recorded.@*RESULTS@#D-to-B time (minutes: 70.6±3.6 vs. 79.4±8.7), troponin testing time (minutes: 17.1±2.3 vs. 65.2±6.5), placement time of the catheterization room (minutes: 28.9±9.8 vs. 52.3±12.2) and activation of the catheterization room to balloon expansion time (minutes: 47.3±9.3 vs. 65.1±7.2) in the experimental group were significantly shorter than those in the control group (all P < 0.01). The NT-proBNP levels at 1 week after intervention in the two groups were lower than the preoperative levels, slightly lower in the experimental group, but the difference was not statistically significant. There was no significant difference in cardiac function at 1 week and 3 months after intervention between the two groups. The LVEF and FS at 6 months after intervention in the experimental group were significantly higher than those in the control group [LVEF: 0.622±0.054 vs. 0.584±0.076, FS: (38.1±4.3)% vs. (35.4±6.2)%, both P < 0.01], and LVESD and LVEDD were decreased significantly [LVESD (mm): 31.2±3.8 vs. 34.7±4.2, LVEDD (mm): 49.2±5.3 vs. 52.4±5.6, all P < 0.01]. The length of hospital stay in the experimental group was significantly shorter than that in the control group (days: 8.3±3.2 vs. 13.2±6.8, P < 0.01), the incidence of major cardiovascular adverse events within 1 month after intervention [13.6% (54/398) vs. 19.8% (77/389)], hospital mortality [1.8% (7/398) vs. 4.9% (19/389)], and readmission rate within 1 year [9.5% (38/398) vs. 14.5% (56/389)] in the experimental group were significantly lower than those in the control group (all P < 0.05).@*CONCLUSIONS@#The usage of FMEA to optimize the vascular recanalization procedure can shorten the emergency treatment time of STEMI patients, reduce the occurrence of adverse events, and improve the prognosis.


Subject(s)
Humans , Chest Pain , Emergency Service, Hospital , Healthcare Failure Mode and Effect Analysis , Myocardial Infarction , Prognosis
3.
Journal of Pharmaceutical Analysis ; (6): 200-206, 2015.
Article in Chinese | WPRIM | ID: wpr-467158

ABSTRACT

Molecularly imprinted polymers for dimethoate recognition were synthesized by the precipitation polymerization technique using methyl methacrylate (MMA) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The morphology, adsorption and recognition properties were investigated by scanning electron microscopy (SEM), static adsorption test, and competitive adsorption test. To obtain the best selectivity and binding performance, the synthesis and adsorption conditions of MIPs were optimized through single factor experiments. Under the optimized conditions, the resultant polymers exhibited uniform size, satisfactory binding capacity and significant selectivity. Furthermore, the imprinted polymers were successfully applied as a specific solid-phase extractants combined with high performance liquid chromatography (HPLC) for determination of dimethoate residues in the cucumber samples. The average recoveries of three spiked samples ranged from 78.5% to 87.9% with the relative standard deviations (RSDs) less than 4.4% and the limit of detection (LOD) obtained for dimethoate as low as 2.3μg/mL.

SELECTION OF CITATIONS
SEARCH DETAIL