Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 575-583, 2021.
Article in English | WPRIM | ID: wpr-919326

ABSTRACT

Composition of the gut microbiota changes with aging and plays an important role in age-associated disease such as metabolic syndrome, cancer, and neurodegeneration. The gut microbiota composition oscillates through the day, and the disruption of their diurnal rhythm results in gut dysbiosis leading to metabolic and immune dysfunctions. It is well documented that circadian rhythm changes with age in several biological functions such as sleep, body temperature, and hormone secretion. However, it is not defined whether the diurnal pattern of gut microbial composition is affected by aging. To evaluate aging effects on the diurnal pattern of the gut microbiome, we evaluated the taxa profiles of cecal contents obtained from young and aged mice of both sexes at daytime and nighttime points by 16S rRNA gene sequencing. At the phylum level, the ratio of Firmicutes to Bacteroidetes and the relative abundances of Verrucomicrobia and Cyanobacteria were increased in aged male mice at night compared with that of young male mice. Meanwhile, the relative abundances of Sutterellaceae, Alloprevotella, Lachnospiraceae UCG-001, and Parasutterella increased in aged female mice at night compared with that of young female mice. The Lachnospiraceae NK4A136 group relative abundance increased in aged mice of both sexes but at opposite time points. These results showed the changes in diurnal patterns of gut microbial composition with aging, which varied depending on the sex of the host. We suggest that disturbed diurnal patterns of the gut microbiome can be a factor for the underlying mechanism of age-associated gut dysbiosis.

2.
Journal of Korean Medical Science ; : e56-2018.
Article in English | WPRIM | ID: wpr-764897

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease. To date, a large number of clinical studies have been conducted to investigate the association between genetic variations and COPD. However, little is known regarding the genetic susceptibility of Koreans to this disease. MER receptor tyrosine kinase (MERTK) plays important roles in the inhibition of inflammation and in the clearance of apoptotic cells. Here, we investigated the association between genetic variations in MERTK and the development of COPD in Koreans. METHODS: We conducted genetic analysis of MERTK using genomic DNA samples from 87 patients with COPD and 88 healthy controls and compared the frequency of each variation or haplotype between the patient and control groups. Subsequently, the effect of each variation was evaluated using in vitro assays. RESULTS: Ten variations were identified in this study, four of them for the first time. In addition, we found that the frequency of each variation or haplotype was comparable between the patient and control groups. However, we observed that the frequency for the wild-type haplotype was higher in the control group, compared to that in the group of patients with COPD, in the subgroup analysis of current smokers, although the difference was not statistically significant (P = 0.080). In in vitro assays, we observed that none of the variations affected the activity of the promoter or the expression of MERTK. CONCLUSION: Our findings indicate that the susceptibility to COPD is not related to the genetic variations or haplotypes of MERTK in Koreans.


Subject(s)
Humans , DNA , Genetic Predisposition to Disease , Genetic Variation , Haplotypes , In Vitro Techniques , Inflammation , Lung Diseases , Protein-Tyrosine Kinases , Pulmonary Disease, Chronic Obstructive , Smoking
3.
Experimental & Molecular Medicine ; : 660-668, 2011.
Article in English | WPRIM | ID: wpr-73120

ABSTRACT

Recent evidence supports a neuroprotective role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) against ischemic brain injury. However, the molecular mechanisms of SHP-2 activation and those governing how SHP-2 exerts its function under oxidative stress conditions are not well understood. Recently we have reported that reactive oxygen species (ROS)-mediated oxidative stress promotes the phosphorylation of endogenous SHP-2 through lipid rafts, and that this phosphorylation strongly occurs in astrocytes, but not in microglia. To investigate the molecules involved in events leading to phosphorylation of SHP-2, raft proteins were analyzed using astrocytes and microglia. Interestingly, caveolin-1 and -2 were detected only in astrocytes but not in microglia, whereas flotillin-1 was expressed in both cell types. To examine whether the H2O2-dependent phosphorylation of SHP-2 is mediated by caveolin-1, we used specific small interfering RNA (siRNA) to downregulate caveolin-1 expression. In the presence of caveolin-1 siRNA, the level of SHP-2 phosphorylation induced by H2O2 was significantly decreased, compared with in the presence of control siRNA. Overexpression of caveolin-1 effectively increased H2O2-induced SHP-2 phosphorylation in microglia. Lastly, H2O2 induced extracellular signal-regulated kinase (ERK) activation in astrocytes through caveolin-1. Our results suggest that caveolin-1 is involved in astrocyte-specific intracellular responses linked to the SHP-2-mediated signaling cascade following ROS-induced oxidative stress.


Subject(s)
Animals , Humans , Rats , Astrocytes/metabolism , Caveolin 1/genetics , Caveolin 2/genetics , Cell Line , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression , Microglia/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL