Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 201-208, 2022.
Article in Chinese | WPRIM | ID: wpr-927595

ABSTRACT

The shivering and nonshivering thermogenesis in skeletal muscles is important for maintaining body temperature in a cold environment. In addition to nervous-humoral regulation, adipose tissue was demonstrated to directly respond to cold in a cell-autonomous manner to produce heat. However, whether skeletal muscle can directly respond to low temperature in an autoregulatory manner is unknown. Transient receptor potential (TRP) channels TRPM8 and TRPA1 are two important cold sensors. In the current study, we found TRPM8 was expressed in mouse skeletal muscle tissue and C2C12 myotubes by RT-PCR. After exposure to 33 °C for 6 h, the gene expression pattern of C2C12 myotubes was significantly changed which was evidenced by RNA-sequencing. KEGG-Pathway enrichment analysis of these differentially expressed genes showed that low temperature changed several important signaling pathways, such as IL-17, TNFα, MAPK, FoxO, Hedgehog, Hippo, Toll-like receptor, Notch, and Wnt signaling pathways. Protein-protein interaction network analysis revealed that IL-6 gene was a key gene which was directly affected by low temperature in skeletal muscle cells. In addition, both mRNA and protein levels of IL-6 were increased by 33 °C exposure in C2C12 myotubes. In conclusion, our findings demonstrated that skeletal muscle cells could directly respond to low temperature, characterized by upregulated expression of IL-6 in skeletal muscle cells.


Subject(s)
Animals , Mice , Cold Temperature , Interleukin-6/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/physiology , Temperature
2.
Acta Physiologica Sinica ; (6): 551-558, 2021.
Article in Chinese | WPRIM | ID: wpr-887690

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) and hyperhomocysteinemia (HHcy) both are major health problems worldwide, whose incidence are closely related with each other. We previously reported the mechanism of HHcy-caused hepatic steatosis, but the role of n-3 polyunsaturated fatty acid (n-3 PUFA) in HHcy-induced hepatic steatosis remains unclear. In this study, 6-week-old C57BL/6 male mice were given a high methionine diet (HMD, 2% methionine diet), and plasma homocysteine levels were measured by ELISA to confirm the establishment of an HHcy model. Meantime, mice were fed HMD with or without n-3 PUFA supplement for 8 weeks to determine the role and mechanism of n-3 PUFA in hepatic steatosis induced by HHcy. Results showed that n-3 PUFA significantly improved hepatic lipid deposition induced by HHcy. qRT-PCR analysis demonstrated that n-3 PUFA inhibited the upregulation of Cd36, a key enzyme of fatty acid uptake, caused by HHcy. Further, the inhibition of hepatic Cd36 expression was associated with the inactivation of aryl hydrocarbon receptor (Ahr) induced by n-3 PUFA. Of note, mass spectrometry revealed that hepatic content of lipoxin A


Subject(s)
Animals , Male , Mice , Fatty Acids, Omega-3 , Fatty Liver/drug therapy , Hyperhomocysteinemia/drug therapy , Liver , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL