Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of the Korean Society of Magnetic Resonance in Medicine ; : 303-313, 2014.
Article in English | WPRIM | ID: wpr-77850

ABSTRACT

PURPOSE: In-vivo conductivity reconstruction using transmit field (B1+) information of MRI was proposed. We assessed the accuracy of conductivity reconstruction in the presence of statistical noise in complex B1 + map and provided a parametric model of the conductivity-to-noise ratio value. MATERIALS AND METHODS: The B1+ distribution was simulated for a cylindrical phantom model. By adding complex Gaussian noise to the simulated B1+ map, quantitative conductivity estimation error was evaluated. The quantitative evaluation process was repeated over several different parameters such as Larmor frequency, object radius and SNR of B1+ map. A parametric model for the conductivity-to-noise ratio was developed according to these various parameters. RESULTS: According to the simulation results, conductivity estimation is more sensitive to statistical noise in B1+ phase than to noise in B1+ magnitude. The conductivity estimate of the object of interest does not depend on the external object surrounding it. The conductivity-to-noise ratio is proportional to the signal-to-noise ratio of the B1+ map, Larmor frequency, the conductivity value itself and the number of averaged pixels. To estimate accurate conductivity value of the targeted tissue, SNR of B1+ map and adequate filtering size have to be taken into account for conductivity reconstruction process. In addition, the simulation result was verified at 3T conventional MRI scanner. CONCLUSION: Through all these relationships, quantitative conductivity estimation error due to statistical noise in B1+ map is modeled. By using this model, further issues regarding filtering and reconstruction algorithms can be investigated for MREPT.


Subject(s)
Evaluation Studies as Topic , Magnetic Resonance Imaging , Noise , Radius , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL