Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 666-676, 2020.
Article in English | WPRIM | ID: wpr-827790

ABSTRACT

This study engineered β-carotene ketolase CrtW and β-carotene hydroxylase CrtZ to improve biosynthesis of astaxanthin in Escherichia coli. Firstly, crtW was randomly mutated to increase CrtW activities on conversion from β-carotene to astaxanthin. A crtW* mutant with A6T, T105A and L239M mutations has improved 5.35-fold astaxanthin production compared with the wild-type control. Secondly, the expression levels of crtW* and crtZ on chromosomal were balanced by simultaneous modulation RBS regions of their genes using RBS library. The strain RBS54 selected from RBS library, directed the pathway exclusively towards the desired product astaxanthin as predominant carotenoid (99%). Lastly, the number of chromosomal copies of the balanced crtW-crtZ cassette from RBS54 was increased using a Cre-loxP based technique, and a strain with 30 copies of the crtW*-crtZ cassette was selected. This final strain DL-A008 had a 9.8-fold increase of astaxanthin production compared with the wild-type control. Fed-batch fermentation showed that DL-A008 produced astaxanthin as predominant carotenoid (99%) with a specific titer of 0.88 g·L without addition of inducer. In conclusion, through constructing crtW mutation, balancing the expression levels between crtW* and crtZ, and increasing the copy number of the balanced crtW*-crtZ cassette, the activities of β-carotene ketolase and β-carotene hydroxylase were improved for conversion of β-carotene to astaxanthin with higher efficiency. The series of conventional and novel metabolic engineering strategies were designed and applied to construct the astaxanthin hetero-producer strain of E. coli, possibly offering a general approach for the construction of stable hetero-producer strains for other natural products.

2.
China Journal of Chinese Materia Medica ; (24): 3326-3331, 2017.
Article in Chinese | WPRIM | ID: wpr-335853

ABSTRACT

Cucurbitadienol has anti-inflammation, anti-cancer activities, and acts as a precursor of traditional Chinese medicine active ingredients mogroside and cucurbitacine. For construction of a Sacchromyces cerevisiae cell factory for production of cucurbitadienol, we firstly cloned a cucurbitadienol synthase (CBS) gene from Siraitia grosvenorii. Then, through heterologous expression of CBS in the triterpenoid chassis strain WD-2091, the engineered strain could produced 27.44 mg•L ⁻¹ cucurbitadienol, which was determined by GC-MS. Further regulation of CBS expression led to cucurbitadienol's titer increasing by 202.07% and reaching 82.89 mg•L ⁻¹ in the shake flask fermentation and 1 724.10 mg•L ⁻¹ in the high cell density fermentation. Our research promotes the cucurbitane-type tetracyclic triterpenoids synthesis pathway analysis progress and provides the basis for further obtaining cell factories for production of cucurbitadienol tetracyclic triterpenoids.

SELECTION OF CITATIONS
SEARCH DETAIL