Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
Chinese Journal of Biotechnology ; (12): 175-180, 2004.
Article in Chinese | WPRIM | ID: wpr-259128

ABSTRACT

To express the extracellular fragement of hepatoma associated antigen HAbl8G(HAb18GEF) in E. coli efficiently in a non-fusing way, the cDNA of HAb18GEF gene was inserted into prokaryotic expression vector pET21a + . The secondary structure and codon adaptation of translational initiation region (TIR, from-30 to + 39) in mRNA of recombinant vector HAb18GEF/ pET21a + was predicted simultaneously by computer-aided design. Stable Stem-Loop structures and many low-usage codons were detected in mRNA-TIR of non-optimized recombinant HAb18GEF/pET21a + vector. The stability of mRNA-TIR in recombinant HAb18GEF/pET21a + vector was reduced with following methods: (1) optimization of secondary structure (2) optimization of codon adaptation. These optimization were realized by non-continual site-directed mutagenesis without changing any amino acid sequence in TIR. After being checked through restriction endonuclease digestion and confirmed through nucleotide sequencing, the pre-optimized and post-optimized recombinant vectors were transformed into competent E. coli JM109-DE3. The resulted recombinant clones were selected randomly and induced by IPTG at 37 degrees C. The induced production of these recombinants was analyzed by SDS-PAGE, indirect ELISA, Western blot, and cell fractionation assay. The amount of HAb18GEF mRNA was also detected by RNA dot blot between pre-optimized recombinant and post-optimized recombinant. The results revealed that recombinant non-fused vectors HAb18GEF/pET21a + were successfully constructed and optimized in the secondary structure and codon adaptation of TIR respectively. The HAb18GEF was expressed efficiently in a non-fusing way in recombinant E. coli by secondary structure optimization or codon adaptation optimization. Whereas, no expression of HAb18GEF was detected in pre-optimized recombinants. The non-fused expression products-HAb18GEF, mainly as inclusion body in E. coli, yielded highly above 29.3%. A trait of expression HAb18GEF was also detected both in intermembrane space and in culture medium due to over-expression and cell leakage. Difference in non-fused expression level of HAb18GEF between secondary structure optimization and codon adaptation optimization was negligible. No difference in amount of transcribed mRNA of HAb18GEF between the pre-optimized and the post-optimized recombinants was detected. To sum up, it's feasible to express hepatoma associated antigen HAb18GEF in a non-fusing way by reducing the stability of TIR in mRNA.


Subject(s)
Humans , Antigens, Neoplasm , Genetics , Base Sequence , Basigin , Genetics , Carcinoma, Hepatocellular , Genetics , Allergy and Immunology , Escherichia coli , Genetics , Metabolism , Extracellular Matrix Proteins , Metabolism , Genetic Vectors , Genetics , Liver Neoplasms , Genetics , Allergy and Immunology , Molecular Sequence Data , Nucleic Acid Conformation , Protein Biosynthesis , Genetics , RNA Stability , RNA, Messenger , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL