Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Acta Physiologica Sinica ; (6): 631-645, 2021.
Article in Chinese | WPRIM | ID: wpr-887698

ABSTRACT

Arachidonic acids (AA) widely exist in multiple organs and can be metabolized into small lipid molecules with strong biological functions through several pathways. Among them, epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE), which are produced by cytochrome P450 enzymes, have attracted a lot of attentions, especially in vascular homeostasis. The regulation of vascular function is the foundation of vascular homeostasis, which is mainly achieved by manipulating the vascular structure and biological function. In the past 30 years, the roles of EETs and 20-HETE in the regulation of vascular function have been widely explored. In this review, we discussed the effects of EETs and 20-HETE on angiogenesis and vascular inflammation, respectively. Generally, EETs can dilate blood vessels and inhibit vascular inflammation, while 20-HETE can induce vasoconstriction and vascular inflammation. Interestingly, both EETs and 20-HETE can promote angiogenesis. In addition, the roles of EETs and 20-HETE in several vascular diseases, such as hypertension and cardiac ischemia, were discussed. Finally, the therapeutic perspectives of EETs and 20-HETE for vascular diseases were also summarized.


Subject(s)
Humans , Arachidonic Acid , Arachidonic Acids , Cytochrome P-450 Enzyme System , Hydroxyeicosatetraenoic Acids , Hypertension , Vasoconstriction
2.
Chinese Journal of Cardiology ; (12): 456-460, 2020.
Article in Chinese | WPRIM | ID: wpr-941084

ABSTRACT

Objective: To analyze the clinical characteristics of the severe or critically ill patients with novel coronavirus pneumonia (COVID-19), and evaluate the impact of complicated myocardial injury on the prognosis of these patients. Methods: A retrospective study was conducted in 54 patients who admitted to Tongji hospital from February 3, 2020 to February 24, 2020 and met the criteria of severe or critical conditions of COVID-19. The clinical characteristics and hospital mortality rate were analyzed and compared between the patients with or without myocardial injury, which was defined with 3 times higher serum cardiac troponin value. Results: The age of the 54 patients was 68.0(59.8, 74.3) years. Among all the patients, 24 (44.4%) patients were complicated with hypertension, 13 (24.1%) with diabetes, 8 (14.8%) with coronary heart disease, and 3 (5.6%) with previous cerebral infarction. During hospitalization, 24 (44.4%) of the patients were complicated with myocardial injury and 26 (48.1%) patients died in hospital. In-hospital mortality was significantly higher in patients with myocardial injury than in patients without myocardial injury (14 (60.9%) vs. 8 (25.8%), P=0.013). Moreover, the levels of C-reactive protein (153.6 (80.3, 240.7) ng/L vs. 49.8 (15.9, 101.9) ng/L) and N-terminal pro-B-type natriuretic peptide (852.0 (400.0, 2 315.3) ng/L vs. 197.0 (115.3, 631.0) ng/L) were significantly higher than patients without myocardial injury (all P<0.01). Conclusions: Prevalence of myocardial injury is high among severe or critically ill COVID-19 patients. Severe or critically ill COVID-19 patients with myocardial injury face a significantly higher risk of in-hospital mortality. The study suggests that it is important to monitor and manage the myocardial injury during hospitalization for severe or critically ill COVID-19 patients.


Subject(s)
Aged , Humans , Middle Aged , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Critical Illness , Heart Injuries , Pandemics , Pneumonia, Viral/complications , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL