Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Anatomica Sinica ; (6): 296-304, 2023.
Article in Chinese | WPRIM | ID: wpr-1015217

ABSTRACT

[Abstract] Objective To investigate the effect of 6-gingerol treatment on cognitive behavior after hypoxic-ischemic brain injury (HIE) in neonatal mice, and to explore the protective mechanism of 6-gingerol on HIE brain injury in neonatal mice by observing the effects on neuronal survival and neural stem cell proliferation. Methods The right common carotid artery was ligated in Kunming mice (78) on the 7th day after birth and HIE model was established after 90 minutes of hypoxic treatment. 6-gingerol was injected intraperitoneally. The cognitive behavior was detected by Morris water maze test; 2,3,5-triphenyl tetrazolium chloride (TTC) staining was used to observe the changes of brain injury; The changes of synaptic structure and number were obseved by transmission electron microscopy; HE staining, Nissl staining and dihydroethidium(DHE) staining were used to observe the pathomorphological changes of hippocampus in each group; The proliferation of neural stem cells and the expression of related transcription factors were detected by immunofluorescence and Real-time PCR; The changes of Akt signal pathway were detected by Western blotting. Results 6-gingerol treatment could improve the long-term learning and memory ability, reduce the brain injury and brain edema of neonatal mice after HIE, and improve synaptic plasticity of mice after HIE. In the 6-gingerol treatment group, the disorder of hippocampal cells in the diseased side of HIE was improved, the number of necrotic cells decreased, the proliferation ability of hippocampal neural stem cells and the expression levels of nestin and sex determining region box transcription factor 2 (Sox2) related transcription factors increased significantly, and the level of phosphorylated Akt (p-Akt) increased. Conclusion It is found that 6-gingerol can improve the learning and memory ability of HIE mice in adulthood and reduce brain tissue injury after HIE. 6-gingerol may play a role in inhibiting the production of reactive oxygen species(ROS), reducing neuronal injury and upregulating the expression of Akt signal pathway, promoting the proliferation of hippocampal neural stem cells, so as to provide potential drugs for the treatment of neonatal HIE.

2.
Acta Anatomica Sinica ; (6): 19-27, 2022.
Article in Chinese | WPRIM | ID: wpr-1015368

ABSTRACT

Objective To explore the effect and mechanism of ginsenoside Rb1 on the repair of sciatic nerve injury (SNI) in mice. Methods Seventy-eight adult male Kunming mice were randomly divided into sham group (26), SNI group (26), SNI+Rb1 group (26). The SNI+Rb1 group was given 10 mg/kg ginsenoside Rb1 (i.p.), and the SNI group and the sham group were given the same volume of normal saline. The injury method was established by squeezing the sciatic nerve. Sciatic functional index (SFI) was used to evaluate sciatic nerve function. Growth associated protein 43 (GAP43) immunofluorescent staining was used to detect neural regeneration and repair on day 14, and the structure changes of the myelin sheath of the injured segment were observed under transmission electron microscope. Ki67 and S100β were used to detect the proliferation and migration ability of Schwann cells, and Real-time PCR was used to detect the mRNA expression levels after crush on day 3 and day 7. Results SFI of SNI+Rb1 group was higher than SNI group. The HE result showed that the sciatic nerve was uniform in the SNI + Rb1 group. The result of immunofluorescent staining displayed that Rb1 enhanced GAP43

SELECTION OF CITATIONS
SEARCH DETAIL