Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Annals of Laboratory Medicine ; : 305-312, 2017.
Article in English | WPRIM | ID: wpr-186612

ABSTRACT

BACKGROUND: We compared the performance of the modified Hodge test (MHT), Triton Hodge test (THT), Carba NP test (CNPt), simplified Carba NP test (CNPt-direct), blue-Carba NP test (BCT), and carbapenem inactivation method (CIM) for rapid and accurate carbapenemase detection. METHODS: The methods were evaluated by using 256 gram-negative isolates, including 197 Enterobacteriaceae (79 Enterobacter spp., 74 Klebsiella spp., 33 Escherichia coli, 10 Citrobacter spp., and 1 Serratia marcescens), 51 Acinetobacter baumannii, and 8 Pseudomonas aeruginosa strains. The collection included 117 non-carbapenemase, 18 Klebsiella pneumoniae carbapenemases (KPC) producers, 46 New Delhi metallo-β-lactamases (NDM) producers, 11 imipenemases (IMP) producers, and 51 oxacillinases (OXA) producers, and 13 strains harboring two different carbapenemase genes. RESULTS: The specificity of the THT (91.5%) was significantly lower than other methods, each of which had 100% specificity (P0.999). Because of improved detection of NDM carriers, THT showed significantly higher sensitivity than the MHT (84.9% vs 75.5%, P<0.001). However, poor performances in detecting OXA still influenced the sensitivities of the CNPt (66.2%) and BCT (82.0%), as well as the MHT and THT. CONCLUSIONS: CNPt-direct and CIM demonstrated the best performance for the efficient detection of carbapenemase among the six evaluated methods. Except the MHT and THT, the detection of carbapenemase-producing Enterobacteriaceae by all the other methods was acceptable, when the OXA-type carbapenemase was not prevalent.


Subject(s)
Acinetobacter baumannii , Citrobacter , Enterobacter , Enterobacteriaceae , Escherichia coli , Gram-Negative Bacteria , Klebsiella , Klebsiella pneumoniae , Methods , Neptune , Pseudomonas aeruginosa , Sensitivity and Specificity , Serratia
2.
Annals of Laboratory Medicine ; : 398-407, 2017.
Article in English | WPRIM | ID: wpr-99759

ABSTRACT

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is considered a serious global threat. However, little is known regarding the multidrug resistance (MDR) mechanisms of CRKP. This study investigated the phenotypes and MDR mechanisms of CRKP and identified their clonal characteristics. METHODS: PCR and sequencing were utilized to identify antibiotic resistance determinants. Integron gene cassette arrays were determined by restriction fragment length polymorphism (RFLP) analysis. Multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were used for epidemiological analysis. Plasmids were typed by using a PCR-based replicon typing and analyzed by conjugation and transformation assays. RESULTS: Seventy-eight strains were identified as resistant to at least one carbapenem; these CRKP strains had a high prevalence rate (38.5%, 30/78) of carbapenemase producers. Additionally, most isolates harbored MDR genes, including Extended spectrum β-lactamases (ESBLs), AmpC, and quinolone and aminoglycoside resistance genes. Loss of porin genes was observed, and Class 1 integron was detected in 66.7% of the investigated isolates. PFGE and MLST results excluded the occurrence of clonal dissemination among these isolates. CONCLUSIONS: A high prevalence of NDM-1 genes encoding carbapenem resistance determinants was demonstrated among the K. pneumoniae isolates. Importantly, this is the first report of bla(NDM-1) carriage in a K. pneumoniae ST1383 clone in China and of a MDR CRKP isolate co-harboring bla(NDM-1), bla(KPC-2), bla(CTX-M), bla(SHV), acc(6′)-Ib, rmtB, qnrB, and acc(6′)-Ib-cr.


Subject(s)
China , Clone Cells , Drug Resistance, Bacterial , Drug Resistance, Microbial , Drug Resistance, Multiple , Electrophoresis, Gel, Pulsed-Field , Genes, MDR , Integrons , Klebsiella pneumoniae , Klebsiella , Molecular Epidemiology , Phenotype , Plasmids , Pneumonia , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Prevalence , Replicon
SELECTION OF CITATIONS
SEARCH DETAIL