Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of The Korean Society of Clinical Toxicology ; : 82-85, 2022.
Article in English | WPRIM | ID: wpr-967859

ABSTRACT

Traditionally, most cases of nicotine poisoning have been due to ingestion of nicotine pesticides. However, the increasing use of electronic cigarettes (e-cigarettes) has resulted in both intentional and unintentional exposure to concentrated liquid nicotine or “eliquid” leading to an increase in nicotine poisoning cases. However, fatalities following the ingestion of the e-liquid are extremely rare. We report a rare case of cardiac arrest and severe encephalopathy following the intentional ingestion of e-liquid.We present the case of a 20-year-old woman who intentionally ingested liquid nicotine intended for e-cigarette use. She was found in asystole and experienced a return of spontaneous circulation (ROSC) after undergoing approximately 46 mins of cardiopulmonary resuscitation. Her plasma nicotine levels were >500 ng/ml. Despite aggressive supportive care, she was found to have encephalopathy consistent with severe anoxic brain injury on magnetic resonance imaging.In recent times, there have been some reports of deaths following liquid nicotine ingestion. Our case illustrates the potential for fatal nicotine toxicity from ingestion of e-cigarettes.

2.
Biomolecules & Therapeutics ; : 465-482, 2021.
Article in English | WPRIM | ID: wpr-889619

ABSTRACT

Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.

3.
Biomolecules & Therapeutics ; : 465-482, 2021.
Article in English | WPRIM | ID: wpr-897323

ABSTRACT

Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.

SELECTION OF CITATIONS
SEARCH DETAIL