Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Experimental & Molecular Medicine ; : e68-2013.
Article in English | WPRIM | ID: wpr-83999

ABSTRACT

The cytogenetic analysis of mesenchymal stromal cells (MSCs) is essential for verifying the safety and stability of MSCs. An in situ technique, which uses cells grown on coverslips for karyotyping and minimizes cell manipulation, is the standard protocol for the chromosome analysis of amniotic fluids. Therefore, we applied the in situ karyotyping technique in MSCs and compared the quality of metaphases and karyotyping results with classical G-banding and chromosomal abnormalities with fluorescence in situ hybridization (FISH). Human adipose- and umbilical cord-derived MSC cell lines (American Type Culture Collection PCS-500-011, PCS-500-010) were used for evaluation. The quality of metaphases was assessed by analyzing the chromosome numbers in each metaphase, the overlaps of chromosomes and the mean length of chromosome 1. FISH was performed in the interphase nuclei of MSCs for 6q, 7q and 17q abnormalities and for the enumeration of chromosomes via oligo-FISH in adipose-derived MSCs. The number of chromosomes in each metaphase was more variable in classical G-banding. The overlap of chromosomes and the mean length of chromosome 1 as observed via in situ karyotyping were comparable to those of classical G-banding (P=0.218 and 0.674, respectively). Classical G-banding and in situ karyotyping by two personnel showed normal karyotypes for both cell lines in five passages. No numerical or structural chromosomal abnormalities were found by the interphase-FISH. In situ karyotyping showed equivalent karyotype results, and the quality of the metaphases was not inferior to classical G-banding. Thus, in situ karyotyping with minimized cell manipulation and the use of less cells would be useful for karyotyping MSCs.


Subject(s)
Humans , Azure Stains , Chromosome Banding/methods , In Situ Hybridization, Fluorescence/methods , Karyotyping/methods , Mesenchymal Stem Cells/cytology
2.
Korean Journal of Hematology ; : 219-224, 2012.
Article in English | WPRIM | ID: wpr-720166

ABSTRACT

BACKGROUND: Granulocyte-colony stimulating factor (G-CSF) is extensively used to improve neutrophil count during anti-cancer chemotherapy. We investigated the effects of G-CSF on several leukemic cell lines and screened for the expression of the G-CSF receptor (G-CSFR) in various malignant cells. METHODS: We examined the effects of the most commonly used commercial forms of G-CSF (glycosylated lenograstim and nonglycosylated filgrastim) on various leukemic cell lines by flow cytometry. Moreover, we screened for the expression of G-CSFR mRNA in 38 solid tumor cell lines by using real-time PCR. RESULTS: G-CSF stimulated proliferation (40-80% increase in proliferation in treated cells as compared to that in control cells) in 3 leukemic cell lines and induced differentiation of AML1/ETO+ leukemic cells. Among the 38 solid tumor cell lines, 5 cell lines (hepatoblastoma, 2 breast carcinoma, squamous cell carcinoma of the larynx, and melanoma cell lines) showed G-CSFR mRNA expression. CONCLUSION: The results of the present study show that therapeutic G-CSF might stimulate the proliferation and differentiation of malignant cells with G-CSFR expression, suggesting that prescreening for G-CSFR expression in primary tumor cells may be necessary before using G-CSF for treatment.


Subject(s)
Breast , Carcinoma, Squamous Cell , Cell Line , Cell Line, Tumor , Flow Cytometry , Granulocyte Colony-Stimulating Factor , Larynx , Melanoma , Neutrophils , Receptors, Granulocyte Colony-Stimulating Factor , Recombinant Proteins , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL