Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Philippine Journal of Health Research and Development ; (4): 78-93, 2023.
Article in English | WPRIM | ID: wpr-1011348

ABSTRACT

Background@#Hypertension is a worldwide epidemic that has been recognized as the most leading global risk for mortality, with its prevalence associated with increased blood pressure, concomitant risks of cardiovascular and kidney diseases, and major commonality in individuals advanced in age. With the current treatment options for hypertension management, there is still a need to develop therapies that directly target receptors that aid in hypertension treatment.@*Methodology@#The study focused on the in-silico profiling of the reported compounds from Areca catechu L. (fam. Arecaceae) towards the n-domain and c-domain angiotensin converting enzyme (ACE) receptor models. Bioisosteric replacement was used to create bioisosteres investigated for similar binding affinity.@*Results@#Some A. catechu compounds exhibited favorable binding energies towards the n- and c-domain receptor models of ACE, binding in the same ACE ligand binding site as lisinopril, benazepril, and sampatrilat via similar interactions and amino acid residues. The majority of A. catechu compounds with favorable ACE binding energies belong to the phytochemical classes of flavonoids, polyphenols and phenolics, glycosides, and steroids. After in silico toxicity and pharmacokinetic profiling, the bioisosteres Leuco-DM02-39, Leuco-DM02-66, Leuco-DM05-60, Querc-DM09-63, and Querc-DM14-31 with binding energies higher than their parent compounds and comparable to lisinopril, benazepril, and sampatrilat were deemed the best.@*Conclusion@#A. catechu compounds have the potential to target ACE n-domain and c-domain receptor models. Three leucocyanidin and two quercetin bioisosteres exhibited favorable binding to the n-domain and c-domain ACE receptor models and could be further optimized to derive a promising antihypertensive agent through ACE inhibition.


Subject(s)
Peptidyl-Dipeptidase A , Areca , Hypertension
2.
Philippine Journal of Health Research and Development ; (4): 11-29, 2022.
Article in English | WPRIM | ID: wpr-987193

ABSTRACT

Background@#Breast cancer is one of the leading causes of deaths in women worldwide, affecting nearly 7.8 million people. In 2020 in the Philippines, there were around 150,000 Filipinos who were newly diagnosed with the disease. The complex pathogenesis of breast cancer in addition to the emergence of resistance to therapy makes the treatment very challenging. Compounds that can antagonize the effects of estradiol towards ER-α, especially the mutant Y537S type are sought for. @*Objectives@#The focus of this study was the in-silico assessment of the reported secondary metabolites from Phaseolus vulgaris L. (fam. Fabaceae) towards the wild-type and mutant ER-α. Bioisosteric replacement was conducted to generate analogs that can possibly have a comparable binding affinity as estradiol towards estrogen receptors alpha. @*Results@#Majority of the secondary metabolites present in Phaseolus vulgaris L. belong to the group of phytoestrogens, phytosterols, and plant hormones. These groups of compounds exhibited favorable binding energies toward the wild-type and mutant (Y537S) estrogen receptors alpha. Moreover, they bind to the same ligand binding pocket as estradiol, involving similar interactions and amino acid residues. @*Conclusion@#Compounds from Phaseolus vulgaris L. can potentially target ER-α. Four gibberellin A19 analogs were generated that exhibited favorable binding towards the wild- and mutant- ER-α and may be further optimized to obtain a promisin gcompound against breast cancer.


Subject(s)
Breast Neoplasms , Molecular Docking Simulation
3.
Philippine Journal of Health Research and Development ; (4): 26-32, 2022.
Article in English | WPRIM | ID: wpr-987087

ABSTRACT

@#Quercetin, a flavonoid compound which is widely distributed in plants are considered ass beneficial physiologically due to attributed bioactivity such as anti-cancer, immunomodulatory, antidiabetic, and anti-inflammatory. In this study, the quercetin content from the dried Blumea balsamifera L. DC dried leaf was macerated with 95% ethanol and the concentrated extract was purified using Modified Kupchan method and flash chromatography. All fractions were tested for the presence of flavonoids using phytochemical screening and the selected dichloromethane fraction were further purified using another round of flash chromatograph. All resulting fractions and pooled samples were tested for the antioxidant property using the developed Thin Layer Chromatography (TLC)-Bioautography and separated compounds were derivatized with DPPH. Using the optimized TLC-Bioautography method, the quercetin content in the dichloromethane fraction was analyzed and compared with a reversed phase high performance liquid chromatography hyphenated with photodiode array detector (RP-HPLC-PDA). The calculated quercetin content from the pooled sample using TLC-bioautography method is 2.25 mg/ml and from RP-HPLC-PDA is 2.02 mg/ml which was not comparable statistically using unpaired t-test (p<0.05, α=0.05


Subject(s)
Quercetin
SELECTION OF CITATIONS
SEARCH DETAIL