Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Korean Journal of Radiology ; : 807-820, 2023.
Article in English | WPRIM | ID: wpr-1002395

ABSTRACT

Objective@#To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. @*Materials and Methods@#This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1–7 according to acquisition conditions. CT images in groups 2–7 were converted into the target CT sty le (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. @*Results@#Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2–7 improved after CT conversion (original vs. converted: 0.63vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists’ scores were significantly higher (P < 0.001) and less variable on converted CT. @*Conclusion@#CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.

2.
Journal of the Korean Radiological Society ; : 344-359, 2022.
Article in English | WPRIM | ID: wpr-926421

ABSTRACT

Purpose@#To develop a denoising convolutional neural network-based image processing technique and investigate its efficacy in diagnosing breast cancer using low-dose mammography imaging. @*Materials and Methods@#A total of 6 breast radiologists were included in this prospective study. All radiologists independently evaluated low-dose images for lesion detection and rated them for diagnostic quality using a qualitative scale. After application of the denoising network, the same radiologists evaluated lesion detectability and image quality. For clinical application, a consensus on lesion type and localization on preoperative mammographic examinations of breast cancer patients was reached after discussion. Thereafter, coded low-dose, reconstructed full-dose, and full-dose images were presented and assessed in a random order. @*Results@#Lesions on 40% reconstructed full-dose images were better perceived when compared with low-dose images of mastectomy specimens as a reference. In clinical application, as compared to 40% reconstructed images, higher values were given on full-dose images for resolution (p < 0.001); diagnostic quality for calcifications (p < 0.001); and for masses, asymmetry, or architectural distortion (p = 0.037). The 40% reconstructed images showed comparable values to 100% full-dose images for overall quality (p = 0.547), lesion visibility (p = 0.120), and contrast (p = 0.083), without significant differences. @*Conclusion@#Effective denoising and image reconstruction processing techniques can enable breast cancer diagnosis with substantial radiation dose reduction.

3.
Investigative Magnetic Resonance Imaging ; : 223-231, 2020.
Article in English | WPRIM | ID: wpr-898832

ABSTRACT

Purpose@#Image registration is a fundamental task in various medical imaging studies and clinical image analyses, such as comparison of patient data with anatomical structures. In order to solve the problems of conventional image registration approaches, such as long computational time, recent deep-learning supervised and unsupervised methods have been extensively studied because of their excellent performance and fast computational time. In this study, we propose a deep-learningbased network for deformable medical image registration using unsupervised learning. @*Materials and Methods@#In this paper, we solve the image-registration optimization problem by modelling a function using a convolutional neural network with polyphase decomposition to learn the spatial transformable parameters based on the input images and to generate the registration field. A spatial transformer is used to reconstruct the output warped image while imposing smoothness constraints on the registration field. With polyphase decomposition, our proposed method learns more features based on the input image pairs without the need for any ground-truth registration field. @*Results@#Experimental results using 3D T1 brain MRI volume scans and compared with state-of-the-art image-registration methods demonstrated that our method provides better 3D-image registration. @*Conclusion@#Our proposed method uses less computational time in registering unseen pairs of input images during inference and can be applied for other unimodal image registration tasks, and the hyper-parameters can be adjusted for the specific task.

4.
Investigative Magnetic Resonance Imaging ; : 223-231, 2020.
Article in English | WPRIM | ID: wpr-891128

ABSTRACT

Purpose@#Image registration is a fundamental task in various medical imaging studies and clinical image analyses, such as comparison of patient data with anatomical structures. In order to solve the problems of conventional image registration approaches, such as long computational time, recent deep-learning supervised and unsupervised methods have been extensively studied because of their excellent performance and fast computational time. In this study, we propose a deep-learningbased network for deformable medical image registration using unsupervised learning. @*Materials and Methods@#In this paper, we solve the image-registration optimization problem by modelling a function using a convolutional neural network with polyphase decomposition to learn the spatial transformable parameters based on the input images and to generate the registration field. A spatial transformer is used to reconstruct the output warped image while imposing smoothness constraints on the registration field. With polyphase decomposition, our proposed method learns more features based on the input image pairs without the need for any ground-truth registration field. @*Results@#Experimental results using 3D T1 brain MRI volume scans and compared with state-of-the-art image-registration methods demonstrated that our method provides better 3D-image registration. @*Conclusion@#Our proposed method uses less computational time in registering unseen pairs of input images during inference and can be applied for other unimodal image registration tasks, and the hyper-parameters can be adjusted for the specific task.

5.
Journal of Korean Medical Science ; : e379-2020.
Article in English | WPRIM | ID: wpr-831666

ABSTRACT

In recent years, artificial intelligence (AI) technologies have greatly advanced and become a reality in many areas of our daily lives. In the health care field, numerous efforts are being made to implement the AI technology for practical medical treatments. With the rapid developments in machine learning algorithms and improvements in hardware performances, the AI technology is expected to play an important role in effectively analyzing and utilizing extensive amounts of health and medical data. However, the AI technology has various unique characteristics that are different from the existing health care technologies. Subsequently, there are a number of areas that need to be supplemented within the current health care system for the AI to be utilized more effectively and frequently in health care. In addition, the number of medical practitioners and public that accept AI in the health care is still low;moreover, there are various concerns regarding the safety and reliability of AI technologyimplementations. Therefore, this paper aims to introduce the current research and application status of AI technology in health care and discuss the issues that need to be resolved.

6.
Korean Journal of Radiology ; : 356-364, 2020.
Article in English | WPRIM | ID: wpr-810978

ABSTRACT

OBJECTIVE: To compare the image quality of low-dose (LD) computed tomography (CT) obtained using a deep learning-based denoising algorithm (DLA) with LD CT images reconstructed with a filtered back projection (FBP) and advanced modeled iterative reconstruction (ADMIRE).MATERIALS AND METHODS: One hundred routine-dose (RD) abdominal CT studies reconstructed using FBP were used to train the DLA. Simulated CT images were made at dose levels of 13%, 25%, and 50% of the RD (DLA-1, -2, and -3) and reconstructed using FBP. We trained DLAs using the simulated CT images as input data and the RD CT images as ground truth. To test the DLA, the American College of Radiology CT phantom was used together with 18 patients who underwent abdominal LD CT. LD CT images of the phantom and patients were processed using FBP, ADMIRE, and DLAs (LD-FBP, LD-ADMIRE, and LD-DLA images, respectively). To compare the image quality, we measured the noise power spectrum and modulation transfer function (MTF) of phantom images. For patient data, we measured the mean image noise and performed qualitative image analysis. We evaluated the presence of additional artifacts in the LD-DLA images.RESULTS: LD-DLAs achieved lower noise levels than LD-FBP and LD-ADMIRE for both phantom and patient data (all p < 0.001). LD-DLAs trained with a lower radiation dose showed less image noise. However, the MTFs of the LD-DLAs were lower than those of LD-ADMIRE and LD-FBP (all p < 0.001) and decreased with decreasing training image dose. In the qualitative image analysis, the overall image quality of LD-DLAs was best for DLA-3 (50% simulated radiation dose) and not significantly different from LD-ADMIRE. There were no additional artifacts in LD-DLA images.CONCLUSION: DLAs achieved less noise than FBP and ADMIRE in LD CT images, but did not maintain spatial resolution. The DLA trained with 50% simulated radiation dose showed the best overall image quality.


Subject(s)
Humans , Artifacts , Noise , Tomography, X-Ray Computed
7.
Journal of the Korean Society of Magnetic Resonance in Medicine ; : 10-20, 2010.
Article in English | WPRIM | ID: wpr-141089

ABSTRACT

PURPOSE: Recently, the Recon Challenge at the 2009 ISMRM workshop on Data Sampling and Image Reconstruction at Sedona, Arizona was held to evaluate feasibility of highly accelerated acquisition of time resolved contrast enhanced MR angiography. This paper provides the step-by-step description of the winning results of k-t FOCUSS in this competition. MATERIALS AND METHODS: In previous works, we proved that k-t FOCUSS algorithm successfully solves the compressed sensing problem even for less sparse cardiac cine applications. Therefore, using k-t FOCUSS, very accurate time resolved contrast enhanced MR angiography can be reconstructed. Accelerated radial trajectory data were synthetized from X-ray cerebral angiography images and provided by the organizing committee, and radiologists double blindly evaluated each reconstruction result with respect to the ground-truth data. RESULTS: The reconstructed results at various acceleration factors demonstrate that each components of compressed sensing, such as sparsifying transform and incoherent sampling patterns, etc can have profound effects on the final reconstruction results. CONCLUSION: From reconstructed results, we see that the compressed sensing dynamic MR imaging algorithm, k-t FOCUSS enables high resolution time resolved contrast enhanced MR angiography.


Subject(s)
Acceleration , Angiography , Arizona , Cerebral Angiography , Image Processing, Computer-Assisted , Principal Component Analysis
8.
Journal of the Korean Society of Magnetic Resonance in Medicine ; : 10-20, 2010.
Article in English | WPRIM | ID: wpr-141088

ABSTRACT

PURPOSE: Recently, the Recon Challenge at the 2009 ISMRM workshop on Data Sampling and Image Reconstruction at Sedona, Arizona was held to evaluate feasibility of highly accelerated acquisition of time resolved contrast enhanced MR angiography. This paper provides the step-by-step description of the winning results of k-t FOCUSS in this competition. MATERIALS AND METHODS: In previous works, we proved that k-t FOCUSS algorithm successfully solves the compressed sensing problem even for less sparse cardiac cine applications. Therefore, using k-t FOCUSS, very accurate time resolved contrast enhanced MR angiography can be reconstructed. Accelerated radial trajectory data were synthetized from X-ray cerebral angiography images and provided by the organizing committee, and radiologists double blindly evaluated each reconstruction result with respect to the ground-truth data. RESULTS: The reconstructed results at various acceleration factors demonstrate that each components of compressed sensing, such as sparsifying transform and incoherent sampling patterns, etc can have profound effects on the final reconstruction results. CONCLUSION: From reconstructed results, we see that the compressed sensing dynamic MR imaging algorithm, k-t FOCUSS enables high resolution time resolved contrast enhanced MR angiography.


Subject(s)
Acceleration , Angiography , Arizona , Cerebral Angiography , Image Processing, Computer-Assisted , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL