Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Korean Circulation Journal ; : 758-771, 2023.
Article in English | WPRIM | ID: wpr-1002021

ABSTRACT

Background and Objectives@#Paroxysmal atrial fibrillation (AF) is a major potential cause of embolic stroke of undetermined source (ESUS). However, identifying AF remains challenging because it occurs sporadically. Deep learning could be used to identify hidden AF based on the sinus rhythm (SR) electrocardiogram (ECG). We combined known AF risk factors and developed a deep learning algorithm (DLA) for predicting AF to optimize diagnostic performance in ESUS patients. @*Methods@#A DLA was developed to identify AF using SR 12-lead ECG with the database consisting of AF patients and non-AF patients. The accuracy of the DLA was validated in 221 ESUS patients who underwent insertable cardiac monitor (ICM) insertion to identify AF. @*Results@#A total of 44,085 ECGs from 12,666 patient were used for developing the DLA. The internal validation of the DLA revealed 0.862 (95% confidence interval, 0.850–0.873) area under the curve (AUC) in the receiver operating curve analysis. In external validation data from 221 ESUS patients, the diagnostic accuracy of DLA and AUC were 0.811 and 0.827, respectively, and DLA outperformed conventional predictive models, including CHARGE-AF,C2HEST, and HATCH. The combined model, comprising atrial ectopic burden, left atrial diameter and the DLA, showed excellent performance in AF prediction with AUC of 0.906. @*Conclusions@#The DLA accurately identified paroxysmal AF using 12-lead SR ECG in patients with ESUS and outperformed the conventional models. The DLA model along with the traditional AF risk factors could be a useful tool to identify paroxysmal AF in ESUS patients.

2.
Journal of Korean Medical Science ; : e198-2021.
Article in English | WPRIM | ID: wpr-892168

ABSTRACT

Background@#Vaccine safety surveillance is important because it is related to vaccine hesitancy, which affects vaccination rate. To increase confidence in vaccination, the active monitoring of vaccine adverse events is important. For effective active surveillance, we developed and verified a machine learning-based active surveillance system using national claim data. @*Methods@#We used two databases, one from the Korea Disease Control and Prevention Agency, which contains flu vaccination records for the elderly, and another from the National Health Insurance Service, which contains the claim data of vaccinated people. We developed a casecrossover design based machine learning model to predict the health outcome of interest events (anaphylaxis and agranulocytosis) using a random forest. Feature importance values were evaluated to determine candidate associations with each outcome. We investigated the relationship of the features to each event via a literature review, comparison with the Side Effect Resource, and using the Local Interpretable Model-agnostic Explanation method. @*Results@#The trained model predicted each health outcome of interest with a high accuracy (approximately 70%). We found literature supporting our results, and most of the important drug-related features were listed in the Side Effect Resource database as inducing the health outcome of interest. For anaphylaxis, flu vaccination ranked high in our feature importance analysis and had a positive association in Local Interpretable Model-Agnostic Explanation analysis. Although the feature importance of vaccination was lower for agranulocytosis, it also had a positive relationship in the Local Interpretable Model-Agnostic Explanation analysis. @*Conclusion@#We developed a machine learning-based active surveillance system for detecting possible factors that can induce adverse events using health claim and vaccination databases. The results of the study demonstrated a potentially useful application of two linked national health record databases. Our model can contribute to the establishment of a system for conducting active surveillance on vaccination.

3.
Journal of Korean Medical Science ; : e198-2021.
Article in English | WPRIM | ID: wpr-899872

ABSTRACT

Background@#Vaccine safety surveillance is important because it is related to vaccine hesitancy, which affects vaccination rate. To increase confidence in vaccination, the active monitoring of vaccine adverse events is important. For effective active surveillance, we developed and verified a machine learning-based active surveillance system using national claim data. @*Methods@#We used two databases, one from the Korea Disease Control and Prevention Agency, which contains flu vaccination records for the elderly, and another from the National Health Insurance Service, which contains the claim data of vaccinated people. We developed a casecrossover design based machine learning model to predict the health outcome of interest events (anaphylaxis and agranulocytosis) using a random forest. Feature importance values were evaluated to determine candidate associations with each outcome. We investigated the relationship of the features to each event via a literature review, comparison with the Side Effect Resource, and using the Local Interpretable Model-agnostic Explanation method. @*Results@#The trained model predicted each health outcome of interest with a high accuracy (approximately 70%). We found literature supporting our results, and most of the important drug-related features were listed in the Side Effect Resource database as inducing the health outcome of interest. For anaphylaxis, flu vaccination ranked high in our feature importance analysis and had a positive association in Local Interpretable Model-Agnostic Explanation analysis. Although the feature importance of vaccination was lower for agranulocytosis, it also had a positive relationship in the Local Interpretable Model-Agnostic Explanation analysis. @*Conclusion@#We developed a machine learning-based active surveillance system for detecting possible factors that can induce adverse events using health claim and vaccination databases. The results of the study demonstrated a potentially useful application of two linked national health record databases. Our model can contribute to the establishment of a system for conducting active surveillance on vaccination.

4.
Healthcare Informatics Research ; : 19-28, 2021.
Article in English | WPRIM | ID: wpr-874606

ABSTRACT

Objectives@#Many deep learning-based predictive models evaluate the waveforms of electrocardiograms (ECGs). Because deep learning-based models are data-driven, large and labeled biosignal datasets are required. Most individual researchers find it difficult to collect adequate training data. We suggest that transfer learning can be used to solve this problem and increase the effectiveness of biosignal analysis. @*Methods@#We applied the weights of a pretrained model to another model that performed a different task (i.e., transfer learning). We used 2,648,100 unlabeled 8.2-second-long samples of ECG II data to pretrain a convolutional autoencoder (CAE) and employed the CAE to classify 12 ECG rhythms within a dataset, which had 10,646 10-second-long 12-lead ECGs with 11 rhythm labels. We split the datasets into training and test datasets in an 8:2 ratio. To confirm that transfer learning was effective, we evaluated the performance of the classifier after the proposed transfer learning, random initialization, and two-dimensional transfer learning as the size of the training dataset was reduced. All experiments were repeated 10 times using a bootstrapping method. The CAE performance was evaluated by calculating the mean squared errors (MSEs) and that of the ECG rhythm classifier by deriving F1-scores. @*Results@#The MSE of the CAE was 626.583. The mean F1-scores of the classifiers after bootstrapping of 100%, 50%, and 25% of the training dataset were 0.857, 0.843, and 0.835, respectively, when the proposed transfer learning was applied and 0.843, 0.831, and 0.543, respectively, after random initialization was applied. @*Conclusions@#Transfer learning effectively overcomes the data shortages that can compromise ECG domain analysis by deep learning.

5.
Korean Journal of Anesthesiology ; : 275-284, 2020.
Article | WPRIM | ID: wpr-833990

ABSTRACT

Biosignals such as electrocardiogram or photoplethysmogram are widely used for determining and monitoring the medical condition of patients. It was recently discovered that more information could be gathered from biosignals by applying artificial intelligence (AI). At present, one of the most impactful advancements in AI is deep learning. Deep learning-based models can extract important features from raw data without feature engineering by humans, provided the amount of data is sufficient. This AI-enabled feature presents opportunities to obtain latent information that may be used as a digital biomarker for detecting or predicting a clinical outcome or event without further invasive evaluation. However, the black box model of deep learning is difficult to understand for clinicians familiar with a conventional method of analysis of biosignals. A basic knowledge of AI and machine learning is required for the clinicians to properly interpret the extracted information and to adopt it in clinical practice. This review covers the basics of AI and machine learning, and the feasibility of their application to real-life situations by clinicians in the near future.

6.
Journal of Sleep Medicine ; : 84-92, 2020.
Article | WPRIM | ID: wpr-836299

ABSTRACT

Objectives@#Cheyne-Stokes respiration (CSR) is frequently found in critically ill patients and is associated with poor prognosis. However, CSR has not been evaluated in neurocritical patients. This study investigated the frequency and prognostic impact of CSR in neurocritical patients using biosignal big data obtained from intensive care units. @*Methods@#This study included all patients who received neurocritical care at the tertiary hospital from January 2018 to December 2019. Clinical information and biosignal data of intensive care units were used and analyzed. The respiratory curve was visually assessed to determine whether CSR and obstructive sleep apnea (OSA) were present, and a heart rate variability (HRV) was obtained from the electrocardiogram. @*Results@#CSR was confirmed in 166 of 406 patients (40.9%). Patients with CSR were older, had a higher frequency of cardiovascular risk factors as well as heart failure, and had a poor outcome (modified Rankin scale ≥4). As a result of multiple regression analysis adjusted for other variables, CSR was significantly associated with poor outcome with an odds ratio of 2.27 times higher (95% confidence interval 1.25–4.14, p=0.007). HRV analysis demonstrated that CSR and OSA had distinct autonomic characteristics. @*Conclusions@#This study first revealed the substantial frequency of CSR in neurocritical patients and suggests that it can be used as a predictor of poor prognosis in neurocritical care.

7.
Healthcare Informatics Research ; : 242-246, 2018.
Article in English | WPRIM | ID: wpr-716031

ABSTRACT

OBJECTIVES: Electrocardiogram (ECG) data are important for the study of cardiovascular disease and adverse drug reactions. Although the development of analytical techniques such as machine learning has improved our ability to extract useful information from ECGs, there is a lack of easily available ECG data for research purposes. We previously published an article on a database of ECG parameters and related clinical data (ECG-ViEW), which we have now updated with additional 12-lead waveform information. METHODS: All ECGs stored in portable document format (PDF) were collected from a tertiary teaching hospital in Korea over a 23-year study period. We developed software which can extract all ECG parameters and waveform information from the ECG reports in PDF format and stored it in a database (meta data) and a text file (raw waveform). RESULTS: Our database includes all parameters (ventricular rate, PR interval, QRS duration, QT/QTc interval, P-R-T axes, and interpretations) and 12-lead waveforms (for leads I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) from 1,039,550 ECGs (from 447,445 patients). Demographics, drug exposure data, diagnosis history, and laboratory test results (serum calcium, magnesium, and potassium levels) were also extracted from electronic medical records and linked to the ECG information. CONCLUSIONS: Electrocardiogram information that includes 12 lead waveforms was extracted and transformed into a form that can be analyzed. The description and programming codes in this case report could be a reference for other researchers to build ECG databases using their own local ECG repository.


Subject(s)
Calcium , Cardiovascular Diseases , Demography , Diagnosis , Drug-Related Side Effects and Adverse Reactions , Electrocardiography , Electronic Health Records , Hospitals, Teaching , Korea , Machine Learning , Magnesium , Potassium
8.
Journal of Korean Diabetes ; : 75-78, 2013.
Article in Korean | WPRIM | ID: wpr-726725

ABSTRACT

With an increase in the instances of obesity, the cases of type 2 diabetes, which is caused by obesity, have also increased significantly. Because of this, the number of obesity metabolic operations performed on diabetes patients with obesity is also accumulating, and there has been no concern for implementing approaches to psychological support for these patients. Negative psychologies include anxiety, depression, passive attitude, stress, fear and impulse control disorder, which continuously influence the patient in a vicious circle of recurrence of obesity and diabetes, even after the obesity metabolic operation was attempted. Therefore, for the success of the obesity metabolic operation and the continuation of self-management of obesity and diabetes post-operation, psychological support is very important. Post-operative psychological support approaches include a respiration method, autogenic training, self-expression training, a stress reduction program, thought-change training and communication skills.


Subject(s)
Humans , Anxiety , Autogenic Training , Depression , Obesity , Recurrence , Respiration , Self Care
9.
Journal of Korean Diabetes ; : 157-161, 2012.
Article in Korean | WPRIM | ID: wpr-726934

ABSTRACT

As the average life span is extended, the elderly population has increased, as has the incidence of certain diseases such as dementia. In addition, an increased number of studies linking diabetes with accelerated cognitive impairment and dementia, have been reported. At this time, providing social service information for dementia patients and using it for diabetes education and counseling is needed. Dementia puts a heavy psychosocial and financial burden on patients and their families, and has a negative influence on life satisfaction of the entire family. Various social services for dementia patients the government offered would help to lessen such a burden.


Subject(s)
Aged , Humans , Counseling , Dementia , Incidence , Social Welfare , Social Workers
SELECTION OF CITATIONS
SEARCH DETAIL