Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters








Language
Year range
1.
Mycobiology ; : 345-356, 2022.
Article in English | WPRIM | ID: wpr-968387

ABSTRACT

The fungal distribution, diversity, and load were analyzed in the geographically segregated island groundwater systems in Korea. A total of 79 fungal isolates were secured from seven islands and identified based on the internal transcribed spacer (ITS) sequences. They belonged to three phyla (Ascomycota, Basidiomycota, and Chlorophyta), five classes, sixteen orders, twenty-two families, and thirty-one genera. The dominant phylum was Ascomycota (91.1%), with most fungi belonging to the Cladosporium (21.5%), Aspergillus (15.2%), and Stachybotrys (8.9%) genera. Cladosporium showed higher dominance and diversity, being widely distributed throughout the geographically segregated groundwater systems. Based on the diversity indices, the genera richness (4.821) and diversity (2.550) were the highest in the groundwater system of the largest scale. As turbidity (0.064–0.462) increased, the overall fungal count increased and the residual chlorine (0.089–0.308) had low relevance compared with the total count and fungal diversity. Cladosporium showed normal mycelial growth in de-chlorinated sterilized samples. Overall, if turbidity increases under higher fungal diversity, bio-deterioration in groundwater-supplying facilities and public health problems could be intensified, regardless of chlorine treatment. In addition to fungal indicators and analyzing methods, physical hydrostatic treatment is necessary for monitoring and controlling fungal contamination.

2.
Mycobiology ; : 235-248, 2021.
Article in English | WPRIM | ID: wpr-902756

ABSTRACT

This study aimed to understand whether the geo-ecological segregation of native plant species affects the root-associated fungal community. Rhizoplane (RP) and rhizosphere (RS) fungal microbiota of Sedum takesimense native to three geographically segregated coastal regions (volcanic ocean islands) were analyzed using culture-independent methods: 568,507 quality sequences, 1399 operational taxonomic units, five phyla, and 181 genera were obtained. Across all regions, significant differences in the phyla distribution and ratio were confirmed. The Chao’s richness value was greater for RS than for RP, and this variance coincided with the number of genera. In contrast, the dominance of specific genera in the RS (Simpson value) was lower than the RP at all sites. The taxonomic identity of most fungal species (95%) closely interacting with the common host plant was different. Meanwhile, a considerable number of RP only residing fungal genera were thought to have close interdependency on their host halophyte. Among these, Metarhizium was the sole genus common to all sites. These suggest that the relationship between potential symbiotic fungi and their host halophyte species evolved with a regional dependency, in the same halophyte species, and of the same natural habitat (volcanic islands); further, the fungal community differenced in distinct geographical regions. Importantly, geographical segregation should be accounted for in national culture collections, based on taxonomical uniqueness.

3.
Mycobiology ; : 235-248, 2021.
Article in English | WPRIM | ID: wpr-895052

ABSTRACT

This study aimed to understand whether the geo-ecological segregation of native plant species affects the root-associated fungal community. Rhizoplane (RP) and rhizosphere (RS) fungal microbiota of Sedum takesimense native to three geographically segregated coastal regions (volcanic ocean islands) were analyzed using culture-independent methods: 568,507 quality sequences, 1399 operational taxonomic units, five phyla, and 181 genera were obtained. Across all regions, significant differences in the phyla distribution and ratio were confirmed. The Chao’s richness value was greater for RS than for RP, and this variance coincided with the number of genera. In contrast, the dominance of specific genera in the RS (Simpson value) was lower than the RP at all sites. The taxonomic identity of most fungal species (95%) closely interacting with the common host plant was different. Meanwhile, a considerable number of RP only residing fungal genera were thought to have close interdependency on their host halophyte. Among these, Metarhizium was the sole genus common to all sites. These suggest that the relationship between potential symbiotic fungi and their host halophyte species evolved with a regional dependency, in the same halophyte species, and of the same natural habitat (volcanic islands); further, the fungal community differenced in distinct geographical regions. Importantly, geographical segregation should be accounted for in national culture collections, based on taxonomical uniqueness.

4.
Mycobiology ; : 351-363, 2020.
Article in English | WPRIM | ID: wpr-836961

ABSTRACT

Here, we investigated fungal microbiota in the understory root layer of representative well-conserved geographically segregated natural wetlands in the Korean Peninsula. We obtained 574,143 quality fungal sequences in total from soil samples in three wetlands, which were classified into 563 operational taxonomic units (OTU), 5 phyla, 84 genera. Soil texture, total nitrogen, organic carbon, pH, and electrical conductivity of soil were variable between geographical sites. We found significant differences in fungal phyla distribution and ratio, as well as genera variation and richness between the wetlands. Diversity was greater in the Jangdo islands wetland than in the other sites (Chao richness/Shannon/Simpson’s for wetland of the Jangdo islands: 283/6.45/0.97 > wetland of the Mt. Gariwang primeval forest: 169/1.17/0.22 > wetland of the Hanbando geology: 145/4.85/0.91), and this variance corresponded to the confirmed number of fungal genera or OTUs (wetlands of Jangdo islands: 42/283 > of Mt. Gariwang primeval forest: 32/169 > of the Hanbando geology: 25/145). To assess the uniqueness of the understory root layer fungus taxa, we analyzed fungal genera distribution. We found that the percentage of fungal genera common to two or three wetland sites was relatively low at 32.3%, while fungal genera unique to each wetland site was 67.7% of the total number of identified fungal species. The Jangdo island wetland had higher fungal diversity than did the other sites and showed the highest level of uniqueness among fungal genera (Is. Jangdo wetland: 34.5% > wetland of Mt. Gariwang primeval forest: 28.6% > wetland of the Hanbando geology: 16.7%).

5.
The Korean Journal of Parasitology ; : 551-558, 2020.
Article | WPRIM | ID: wpr-833818

ABSTRACT

The flaviviruses are small single-stranded RNA viruses that are typically transmitted by mosquitoes or tick vectors and are etiological agents of acute zoonotic infections. The viruses are found around the world and account for significant cases of human diseases. We investigated population of culicine mosquitoes in central region of Korean Peninsula, Incheon Metropolitan City and Hwaseong-si. Aedes vexans nipponii was the most frequently collected mosquitoes (56.5%), followed by Ochlerotatus dorsalis (23.6%), Anopheles spp. (10.9%), and Culex pipiens complex (5.9%). In rural regions of Hwaseong, Aedes vexans nipponii was the highest population (62.9%), followed by Ochlerotatus dorsalis (23.9%) and Anopheles spp. (12.0%). In another rural region of Incheon (habitat of migratory birds), Culex pipiens complex was the highest population (31.4%), followed by Ochlerotatus dorsalis (30.5%), and Aedes vexans vexans (27.5%). Culex pipiens complex was the predominant species in the urban region (84.7%). Culicine mosquitoes were identified at the species level, pooled up to 30 mosquitoes each, and tested for flaviviral RNA using the SYBR Green-based RT-PCR and confirmed by cDNA sequencing. Three of the assayed 2,683 pools (989 pools without Anopheles spp.) were positive for Culex flaviviruses, an insect-specific virus, from Culex pipiens pallens collected at the habitats for migratory birds in Incheon. The maximum likelihood estimation (the estimated number) for Culex pipiens pallens positive for Culex flavivirus was 25. Although viruses responsible for mosquito-borne diseases were not identified, we encourage intensified monitoring and long-term surveillance of both vector and viruses in the interest of global public health.

6.
Osong Public Health and Research Perspectives ; (6): 159-168, 2017.
Article in English | WPRIM | ID: wpr-656376

ABSTRACT

OBJECTIVES: The objective of this review is to propose an appropriate course of action for improving the guidelines followed by food handlers for control of infection. For this purpose, previous epidemiological reports related to acute gastroenteritis in food service businesses mediated by food handlers were intensively analyzed. METHODS: Relevant studies were identified in international databases. We selected eligible papers reporting foodborne infectious disease outbreaks. Among primary literature collection, the abstract of each article was investigated to find cases that absolutely identified a causative factor to be food handlers’ inappropriate infection control and the taxon of causative microbial agents by epidemiological methodologies. Information about the sites (type of food business) where the outbreaks occurred was investigated. RESULTS: A wide variety of causative microbial agents has been investigated, using several epidemiological methods. These agents have shown diverse propagation pathways based on their own molecular pathogenesis, physiology, taxonomy, and etiology. CONCLUSION: Depending on etiology, transmission, propagation, and microbiological traits, we can predict the transmission characteristics of pathogens in food preparation areas. The infected food workers have a somewhat different ecological place in infection epidemiology as compared to the general population. However, the current Korean Food Safety Act cannot propose detailed guidelines. Therefore, different methodologies have to be made available to prevent further infections.


Subject(s)
Classification , Commerce , Communicable Diseases , Disease Outbreaks , Epidemiologic Methods , Epidemiology , Food Safety , Food Services , Gastroenteritis , Infection Control , Korea , Physiology
7.
Mycobiology ; : 150-159, 2017.
Article in English | WPRIM | ID: wpr-729300

ABSTRACT

This study analyzed the distribution of endophytic fungi in 3 coastal environments with different climatic, geographical, and geological characteristics: the volcanic islands of Dokdo, the East Sea, and the West Sea of Korea. The isolated fungal endophytes were characterized and analyzed with respect to the characteristics of their host environments. For this purpose, we selected common native coastal halophyte communities from three regions. Molecular identification of the fungal endophytes showed clear differences among the sampling sites and halophyte host species. Isolates were also characterized by growth at specific salinities or pH gradients, with reference to previous geographical, geological, and climate studies. Unlike the East Sea or West Sea isolates, some Dokdo Islands isolates showed endurable traits with growth in high salinity, and many showed growth under extremely alkaline conditions. A smaller proportion of West Sea coast isolates tolerate compared to the East Sea or Dokdo Islands isolates. These results suggest that these unique fungal biota developed through a close interaction between the host halophyte and their environment, even within the same halophyte species. Therefore, this study proposes the application of specific fungal resources for restoring sand dunes and salt-damaged agricultural lands and industrialization of halophytic plants.


Subject(s)
Biota , Climate , Endophytes , Fungi , Islands , Korea , Proton-Motive Force , Salinity , Salt-Tolerant Plants
8.
Mycobiology ; : 160-171, 2017.
Article in English | WPRIM | ID: wpr-729299

ABSTRACT

Larvae of Bradysia agrestis, an insect vector that transports plant pathogens, were sampled from geographically isolated regions in Korea to identify their cutaneous fungal and bacterial flora. Sampled areas were chosen within the distribution range of B. agrestis; each site was more than 91 km apart to ensure geographical segregation. We isolated 76 microbial (fungi and bacteria) strains (site 1, 29; site 2, 29; site 3, 18 strains) that were identified on the basis of morphological differences. Species identification was molecularly confirmed by determination of universal fungal internal transcribed spacer and bacterial 16S rRNA gene sequences in comparison to sequences in the EzTaxon database and the NCBI GenBank database, and their phylogenetic relationships were determined. The fungal isolates belonged to 2 phyla, 5 classes, and 7 genera; bacterial species belonged to 23 genera and 32 species. Microbial diversity differed significantly among the geographical groups with respect to Margalef's richness (3.9, 3.6, and 4.5), Menhinick's index (2.65, 2.46, and 3.30), Simpson's index (0.06, 0.12, and 0.01), and Shannon's index (2.50, 2.17, and 2.58). Although the microbial genera distribution or diversity values clearly varied among geographical groups, common genera were identified in all groups, including the fungal genus Cladosporium, and the bacterial genera Bacillus and Rhodococcus. According to classic principles of co-evolutionary relationship, these genera might have a closer association with their host insect vector B. agrestis than other genera identified. Some cutaneous bacterial genera (e.g., Pseudomonas) displaying weak interdependency with insect vectors may be hazardous to agricultural environments via mechanical transmission via B. agrestis. This study provides comprehensive information regarding the cutaneous microflora of B. agrestis, which can help in the control of such pests for crop management.


Subject(s)
Bacillus , Biodiversity , Cladosporium , Databases, Nucleic Acid , Genes, rRNA , Insect Vectors , Insecta , Korea , Larva , Plants , Rhodococcus
9.
Mycobiology ; : 231-238, 2015.
Article in English | WPRIM | ID: wpr-729640

ABSTRACT

A total of 4 aquatic plants, Eleocharis kuroguwai Ohwi, Hydrocharis dubia Backer, Salvinia natans All., and Zizania latifolia Turcz., were sampled from representative two wetlands of South Korea. A total of 38 endophytic fungal strains were isolated from aquatic plants native to the Daepyeong wetland, and 27 strains were isolated from the Jilnal wetland. The internal transcribed spacer regions of fungal isolates were sequenced and a phylogenetic analysis was performed. In addition, endophytic fungal diversity from each wetland and host plant species was deduced. A total of 25 fungal genera were purely isolated, and 16 fungal genera were isolated from each of the two wetlands. Commonly isolated genera from both wetlands were Aspergillus, Cladosporium, Clonostachys, Fusarium, Leptosphaeria, Penicillium, and Talaromyces. This study revealed that fungal diversity varied with environmental conditions and by host plant in representative two wetlands.


Subject(s)
Aspergillus , Cladosporium , Eleocharis , Fresh Water , Fungi , Fusarium , Korea , Penicillium , Plants , Talaromyces , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL