Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Tissue Engineering and Regenerative Medicine ; (6): 921-937, 2023.
Article in English | WPRIM | ID: wpr-1003165

ABSTRACT

BACKGROUND@#Beating cardiomyocyte regeneration therapies have revealed as alternative therapeutics for heart transplantation. Nonetheless, the importance of nitric oxide (NO) in cardiomyocyte regeneration has been widely suggested, little has been reported concerning endogenous NO during cardiomyocyte differentiation. @*METHODS@#Here, we used P19CL6 cells and a Myocardiac infarction (MI) model to confirm NO-induced protein modification and its role in cardiac beating. Two tyrosine (Tyr) residues of b2-tubulin (Y106 and Y340) underwent nitrosylation (Tyr-NO) by endogenously generated NO during cardiomyocyte differentiation from pre-cardiomyocyte-like P19CL6 cells. @*RESULTS@#Tyr-NO-b2-tubulin mediated the interaction with Stathmin, which promotes microtubule disassembly, and was prominently observed in spontaneously beating cell clusters and mouse embryonic heart (E11.5d). In myocardial infarction mice, Tyr-NO-b2-tubulin in transplanted cells was closely related with cardiac troponin-T expression with their functional recovery, reduced infarct size and thickened left ventricular wall. @*CONCLUSION@#This is the first discovery of a new target molecule of NO, b2-tubulin, that can promote normal cardiac beating and cardiomyocyte regeneration. Taken together, we suggest therapeutic potential of Tyr-NO-b2-tubulin, for ischemic cardiomyocyte, which can reduce unexpected side effect of stem cell transplantation, arrhythmogenesis.

2.
Experimental & Molecular Medicine ; : 618-628, 2009.
Article in English | WPRIM | ID: wpr-10784

ABSTRACT

To examine copy number variations among the Korean population, we compared individual genomes with the Korean reference genome assembly using the publicly available Korean HapMap SNP 50 k chip data from 90 individuals. Korean individuals exhibited 123 copy number variation regions (CNVRs) covering 27.2 mb, equivalent to 1.0% of the genome in the copy number variation (CNV) analysis using the combined criteria of P value (P or = 0.25) among study subjects. In contrast, when compared to the Affymetrix reference genome assembly from multiple ethnic groups, considerably more CNVRs (n = 643) were detected in larger proportions (5.0%) of the genome covering 135.1 mb even by more stringent criteria (P or = 0.25), reflecting ethnic diversity of structural variations between Korean and other populations. Some CNVRs were validated by the quantitative multiplex PCR of short fluorescent fragment (QMPSF) method, and then copy number invariant regions were detected among the study subjects. These copy number invariant regions would be used as good internal controls for further CNV studies. Lastly, we demonstrated that the CNV information could stratify even a single ethnic population with a proper reference genome assembly from multiple heterogeneous populations.


Subject(s)
Humans , Asian People/genetics , DNA Copy Number Variations , Genetics, Population , Genome, Human , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL