Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Journal of Biomedical Research ; : 47-52, 2015.
Article in English | WPRIM | ID: wpr-119557

ABSTRACT

Macrophages play an important role in both the innate and adaptive immune responses. These include phagocytosis, killing of microorganisms, antigen presentation, and induction of immune cytokines and antimicrobial genes. Macrophage activity is reported to be controlled by diverse exogenous antigenic or endogenous metabolic molecules, and the underlying mechanisms are well documented in human and mouse macrophage cells. Bacterial lipopolysaccharide (LPS) is known to be one of the most potent stimuli activating macrophages through the toll like receptor 4 (TLR4) signaling pathway. There are other antigenic molecules, such as muramyl dipeptide (MDP) and outer membrane protein A (OmpA), that are also known to activate immune cells. On the other hand, short chain fatty acids (SCFAs) such as acetate and butyrate are produced by gut microbiota and control host energy metabolism and signal transduction through GPR receptors. However, there are few studies demonstrating the effects of these molecules in macrophages from domestic animals, including domestic pigs. In this study, we attempted to characterize gene expression regulation in porcine macrophages (PoM2, Pig Monocytes clone 2) following treatment with LPS, MDP, OmpA, and two short chain fatty acids using porcine genome microarray and RT-PCR techniques. A number of novel porcine genes, including anti-microbial peptides and others, appeared to be regulated at the transcriptional level. Our study reports novel biomarkers such as SLC37A2, TMEN184C, and LEAP2 that are involved in the porcine immune response to bacterial antigen LPS and two short chain fatty acids.


Subject(s)
Animals , Humans , Mice , Acetylmuramyl-Alanyl-Isoglutamine , Animals, Domestic , Antigen Presentation , Biomarkers , Butyrates , Clone Cells , Cytokines , Energy Metabolism , Fatty Acids , Gene Expression Regulation , Genome , Hand , Homicide , Macrophages , Membrane Proteins , Microbiota , Monocytes , Oligonucleotide Array Sequence Analysis , Peptides , Phagocytosis , Signal Transduction , Sus scrofa , Toll-Like Receptor 4
2.
Journal of Biomedical Research ; : 235-239, 2013.
Article in Korean | WPRIM | ID: wpr-97582

ABSTRACT

Antimicrobial peptides (AMPs) are an important component of innate defense mechanisms with broad-spectrum activities against various pathogenic microorganisms, including Gram-positive and Gram-negative bacteria, fungi, and viruses. Antibiotic resistance has become a pervasive and global health burden, resulting in the immediate need to develop a new class of antibiotic substances. We screened a 16-mer random peptide library using the yeast two-hybrid system with Beclin 1 as bait and found that two 16-mer peptides (named P4 and P30) appeared to interact with Beclin1 in the beta-gal assay. The two candidate cDNAs were introduced into the yeast secretory system of Pichia pastoris and their expression induced in the presence of methanol. Spectrophotometric analysis and Disc clear zone assay using the supernatant of the yeast growth media showed that both of the two peptides had strong activities against Staphylococcus aureus, MRSA (methicillin resistance Staphylococcus aureus), MRSA2242, and MRSA-2250, but no effect on commensal Lactobacillus strains. PCR analysis of the genomic DNA of transformed Pichia pastoris using AOX1 primers revealed that the two cDNAs were integrated into the genome at the AOX1 locus. Our result suggests that these peptides could be developed as a useful alternative to classic chemical antibiotics.


Subject(s)
Anti-Bacterial Agents , Defense Mechanisms , DNA , DNA, Complementary , Drug Resistance, Microbial , Fungi , Genome , Gram-Negative Bacteria , Lactobacillus , Lacticaseibacillus casei , Methanol , Methicillin-Resistant Staphylococcus aureus , Peptide Library , Peptides , Pichia , Polymerase Chain Reaction , Staphylococcus , Staphylococcus aureus , Two-Hybrid System Techniques , Yeasts
3.
Experimental & Molecular Medicine ; : 565-573, 2008.
Article in English | WPRIM | ID: wpr-84645

ABSTRACT

Viral proteins of gamma-2 herpesviruses, such as LMP2A of Epstein Barr virus (EBV) and Tip of herpesvirus saimiri (HVS) dysregulate lymphocyte signaling by interacting with Src family kinases. K15 open reading frame of Kaposi's sarcoma associated herpesvirus (KSHV), located at the right end of the viral genome, encodes several splicing variants differing in numbers of transmembrane domains. Previously, we demonstrated that the cytoplasmic tail of the K15 protein interfered with B cell receptor signal transduction to cellular tyrosine phosphorylation and calcium mobilization. However, the detailed mechanism underlying this phenomenon was not understood. In the C-terminal cytoplasmic region of K15, putative binding domains for Src-SH2 and -SH3 were identified. In this study, we attempted to characterize these modular elements and cellular binding protein(s) by GST pull down and co-immunoprecipitation assays. These studies revealed that K15 interacted with the major B cell tyrosine kinase Lyn. In vitro kinase and transient co-expression assays showed that the expression of K15 protein resulted in activation of Lyn kinase activity. In addition, GST pull down assay suggested that the SH2 domain of Lyn alone was necessary for interaction with the C-terminal SH2B (YEEV) of K15, but the addition of Lyn SH3 to the SH2 domain increases the binding affinity to K15 protein. The data from luciferase assays indicate that K15 expression in BJAB cells induced NFAT and AP1 activities. The tyrosine residue in the C-terminal end of K15 required for the Lyn interaction appeared to be essential for NFAT/AP1 activation, highlighting the significance of the C-terminal SH2B of K15 as a modular element in interfering with B lymphocyte signaling through interaction with Lyn kinase.


Subject(s)
Humans , Cell Line , Herpesvirus 8, Human/genetics , Immunoblotting , Immunoprecipitation , Membrane Proteins/genetics , NFATC Transcription Factors/genetics , Phosphorylation , Protein Binding , Sarcoma, Kaposi/virology , Transcription Factor AP-1/genetics , Transfection , Viral Proteins/genetics , src-Family Kinases/genetics
4.
The Journal of the Korean Orthopaedic Association ; : 537-544, 2007.
Article in Korean | WPRIM | ID: wpr-645911

ABSTRACT

PURPOSE: Isoflavones are rich in soybean and are known to affect bone formation. This study examined the effects and modes of action of isoflavones on the differentiation of C2C12 myoblasts in the presence of the bone morphogenetic protein (BMP)-4. MATERIALS AND METHODS: The isoflavones, daidzein, genistein or equol, and/or BMP-4 were added alone or in combination to C2C12 myoblasts. After 72 hours culture, the cells were stained for the early osteoblastic differentiation marker, alkaline phosphatase (ALP). The ALP activity was determined by comparing the color of the stained images as well as by spectrophotometry. The expression profiles of the extracellular matrix (ECM) genes responsible for the extensive remodeling at the cell surface were analyzed using agene expression microarray after treating thesamples with daidzein. RESULTS: ALP staining of BMP-4 or the isoflavones-treated cells showed that BMP-4 increased the activity of ALP in a dose dependent manner, whereas the isoflavones alone did not induced any remarkable increase. However, the ALP activity increased when the cells were treated with BMP-4 and any of the three isoflavones. The macrogen mouse MAC array data showed that the ECM genes, Mmp13 and Mmp3, were up-regulated by daidzein, whereas Col4a2, Col5a1 and Mmp9 were down-regulated. CONCLUSION: Isoflavones induce osteoblastic differentiation when combined with BMP-4, which is possibly achieved by modulating the expressional levels of various ECM genes.


Subject(s)
Animals , Mice , Alkaline Phosphatase , Bone Morphogenetic Proteins , Equol , Extracellular Matrix , Genistein , Isoflavones , Myoblasts , Osteoblasts , Osteogenesis , Glycine max , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL