Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add filters








Year range
1.
Anatomy & Cell Biology ; : 252-258, 2023.
Article in English | WPRIM | ID: wpr-999265

ABSTRACT

The human fetal sacroiliac joint (SIJ) is characterized by unequal development of the paired bones and delayed cavitation. Thus, during the long in utero period, the bony ilium becomes adjacent to the cartilaginous sacrum. This mor phology may be analogous to that of the temporomandibular joint (TMJ). We examined horizontal histological sections of 24 fetuses at 10–30 weeks and compared the timing and sequences of joint cartilage development, cavitation, and ossification of the ilium. We also examined histological sections of the TMJ and humeroradial joint, because these also contain a disk or disk-like structure. In the ilium, endochondral ossification started in the anterior side of the SIJ, extended posteriorly and reached the joint at 12 weeks GA, and then extended over the joint at 15 weeks GA. Likewise, the joint cartilage appeared at the anterior end of the future SIJ at 12 weeks GA, and extended along the bony ilium posteriorly to cover the entire SIJ at 26 weeks GA. The cavitation started at 15 weeks GA. Therefore, joint cartilage development seemed to follow the ossification of the ilium by extending along the SIJ, and cavitation then occurred. This sequence “ossification, followed by joint cartilage formation, and then cavitation” did not occur in the TMJ or humeroradial joint. The TMJ had a periosteum-like membrane that covered the joint surface, but the humeroradial joint did not. After muscle contraction starts, it is likely that the mechanical stress from the bony ilium induces development of joint cartilage.

2.
Anatomy & Cell Biology ; : 467-474, 2022.
Article in English | WPRIM | ID: wpr-966166

ABSTRACT

At birth, the umbilical cord contains various types of thin vessels that are near and outside the umbilicus and separate from the umbilical arteries and vein. These vessels are regarded as the remnant “vitelline vessels” and are often called “umbilical vessels”, although this terminology could lead to confusion with the true umbilical arteries and vein. No study has yet comprehensively examined these vessels using histological sections. Our examination of these vessels in 25 midterm fetuses (gestational age: 10–16 weeks) led to five major findings: (i) all specimens had umbilical branches of the inferior epigastric artery; (ii) 5 specimens had vitelline vein remnants; (iii) 4 specimens had a thin artery originating from the left hepatic artery that ran along the umbilical vein; (iv) 2 specimens had a so-called “para-umbilical vein” that was along the umbilical vein and reached the umbilicus; and (v) all specimens had lymphatic vessels originating from the umbilicus that ran caudally along the umbilical artery. The pelvic vein tributaries were well developed along the intra-abdominal umbilical artery, but did not reach the umbilicus. The lymphatic vessel was distinguished from the veins by an intraluminar cluster of lymphocytes attaching to the endothelium. The arterial branch in the umbilical cord did not accompany veins and lymphatic vessels, in contrast to the mother artery in the rectus abdominis. All these thin vessels seemed to be obliterated when the fibrous umbilical ring grew during late-term. The para-umbilical collateral vein in adults might develop outside the fibrous umbilical ring after birth.

3.
Anatomy & Cell Biology ; : 475-482, 2022.
Article in English | WPRIM | ID: wpr-966165

ABSTRACT

Solitary distal vaginal atresia is generally caused by a transverse septum or an imperforate hymen. We found a novel type of distal vaginal atresia in a late-term fetus (gestational age approximately 28 weeks) in our histology collection. This fetus had a vaginal vestibule that was closed and covered by a thick subcutaneous tissue beneath the perineal skin in the immediately inferior or superficial side of the imperforate hymen. The uterus, uterine tube, anus, and anal canal had normal development. The urethral rhabdosphincters were well-developed and had a normal topographical relationship with the vagina, but the urethrovaginal sphincter was absent. Thus, vaginal descent seemed to occur normally and form the vestibule. However, the external orifice of the urethra consisted of a highly folded duct with hypertrophied squamous epithelium. Notably, the corpus cavernosum and crus of the clitoris had poor development and were embedded in the subcutaneous tissue, distant from the vestibule. Normally, the cloacal membrane shifts from the bottom of the urogenital sinus to the inferior aspect of the thick and elongated genital tubercle after establishment of the urorectal septum. Therefore, we speculate there was a failure in the transposition of the cloacal membrane caused by decreased elongation of the genital tubercle. The histology of this anomaly strongly suggested that the hymen does not represent a part of the cloacal membrane, but is instead a product that appears during the late recanalization of the distal vagina after vaginal descent. The transverse septum was also likely to form during this recanalization.

4.
Anatomy & Cell Biology ; : 65-73, 2021.
Article in English | WPRIM | ID: wpr-888968

ABSTRACT

Human fetal cervical vertebrae are characterized by the large zygapophysial joint (ZJ) extending posteriorly. During our recent studies on regional differences in the shape, extent, and surrounding tissue of the fetal ZJ, we incidentally found a cervical-specific structure of synovial tissues. This study aimed to provide a detailed evaluation of the synovial structure using sagittal and horizontal sections of 20 near-term fetuses. The cervical ZJ consistently had a large cavity with multiple recesses at the margins and, especially at the anterior end, the recess interdigitated with or were located close to tree-like tributaries of the veins of the external vertebral plexus. In contrast to the flat and thin synovial cell lining of the recess, the venous tributary had cuboidal endothelial cells. No or few elastic fibers were identified around the ZJ. The venous-synovial complex seems to be a transient morphology at and around birth, and it may play a role in the stabilization of the growing cervical ZJ against frequent spontaneous dislocation reported radiologically in infants. The venous-synovial complex in the cervical region should be lost and replaced by elastic fibers in childhood or adolescence. However, the delayed development of the ligament flavum is also likely to occur in the lumbar ZJ in spite of no evidence of a transient venous-synovial structure. The cuboidal venous endothelium may simply represent the high proliferation rate for the growing complex.

5.
Anatomy & Cell Biology ; : 259-269, 2021.
Article in English | WPRIM | ID: wpr-888946

ABSTRACT

The bony carotid canal is a tube-like bone with a rough surface in contrast to smooth surfaces of the other parts of the temporal bone petrosal portion (petrosa): it takes an impression of the additional, out-sourcing product. No study had been conducted to evaluate a contribution of the adjacent sphenoid and pharyngotympanic tube (PTT) to the carotid canal. We examined sagittal and horizontal histological sections of hemi-heads from 37 human fetuses at 10 to 37 weeks. At 10 to 18 weeks, the future carotid canal was identified as a wide loose space between the cartilaginous cochlea and the ossified or cartilaginous sphenoid elements (ala temporalis and pterygoid). A linear mesenchymal condensation extending between the cochlear wall and ala temporalis suggested the future antero-inferior margin of the carotid canal. This delineation was more clearly identified in later stages. After 25 weeks, 1) the growing pterygoid pushed the PTT upward and, in turn, the PTT pushed the internal carotid artery (ICA) upward toward the petrosa: 2) a membranous ossification occurs in the dense mesenchymal tissue, the latter of which took an appearance of an anterior process of the petrosa; 3) the bony process of the petrosa involved the ICA inside or posteriorly. The bony carotid canal was made with membranous ossification in the dense mesenchymal tissue between the petrosa and sphenoid. The mother tissue was detached from the sphenoid by the PTT. The ossification of the septum between the ICA and tympanic cavity seemed to continue after birth.

6.
Anatomy & Cell Biology ; : 270-279, 2021.
Article in English | WPRIM | ID: wpr-888945

ABSTRACT

Previous studies of midterm fetuses indicated that a cartilaginous fabella appeared to be embedded in the plantaris (PL), and was fused with the gastrocnemius lateral head (GL). We re-examined the topographical anatomy of the fabella or its analogue (a tight fibrous mass) originating in the GL and/or PL by evaluating histological sections of the unilateral knees of 15 late-term fetuses. Regardless of whether the cartilaginous fabella was present (6 fetuses) or absent (9 fetuses), the origins of the PL and GL muscles each had three parts. In each fetus, the fabella or its analogue was embedded in a thick common tendinous origin of the GL and PL. PL1 (whose origin is similar to that of the adult PL) originated from the femoral condyle immediately above the common tendon; PL2 originated from the posteromedial aspect of the fabella or its analogue; and PL3 originated from the inferior aspect of the fabella or its analogue. The muscle fibers of PL1, PL2, and PL3 joined to provide a thick plantaris. GL1 (which is adjacent to PL2) originated from the common tendon in the superior side of the fabella or its analogue and GL2 originated from the inferior side of the fabella or its analogue. GL1 and GL2 joined to provide a thick bundle, whereas GL3 (located far below the fabella or its analogue) originated from the posterior surface aponeurosis.Therefore, drastic reconstruction at these muscle origins was necessary during development. Due to the strong mechanical stress from the GL and the space-occupying effect of the muscle, we hypothesize that PL2 and PL3 are degraded or absorbed into the GL1 and GL2 during the postnatal period, so that the remaining PL1 was likely the remaining PL in adults.

7.
Anatomy & Cell Biology ; : 65-73, 2021.
Article in English | WPRIM | ID: wpr-896672

ABSTRACT

Human fetal cervical vertebrae are characterized by the large zygapophysial joint (ZJ) extending posteriorly. During our recent studies on regional differences in the shape, extent, and surrounding tissue of the fetal ZJ, we incidentally found a cervical-specific structure of synovial tissues. This study aimed to provide a detailed evaluation of the synovial structure using sagittal and horizontal sections of 20 near-term fetuses. The cervical ZJ consistently had a large cavity with multiple recesses at the margins and, especially at the anterior end, the recess interdigitated with or were located close to tree-like tributaries of the veins of the external vertebral plexus. In contrast to the flat and thin synovial cell lining of the recess, the venous tributary had cuboidal endothelial cells. No or few elastic fibers were identified around the ZJ. The venous-synovial complex seems to be a transient morphology at and around birth, and it may play a role in the stabilization of the growing cervical ZJ against frequent spontaneous dislocation reported radiologically in infants. The venous-synovial complex in the cervical region should be lost and replaced by elastic fibers in childhood or adolescence. However, the delayed development of the ligament flavum is also likely to occur in the lumbar ZJ in spite of no evidence of a transient venous-synovial structure. The cuboidal venous endothelium may simply represent the high proliferation rate for the growing complex.

8.
Anatomy & Cell Biology ; : 259-269, 2021.
Article in English | WPRIM | ID: wpr-896650

ABSTRACT

The bony carotid canal is a tube-like bone with a rough surface in contrast to smooth surfaces of the other parts of the temporal bone petrosal portion (petrosa): it takes an impression of the additional, out-sourcing product. No study had been conducted to evaluate a contribution of the adjacent sphenoid and pharyngotympanic tube (PTT) to the carotid canal. We examined sagittal and horizontal histological sections of hemi-heads from 37 human fetuses at 10 to 37 weeks. At 10 to 18 weeks, the future carotid canal was identified as a wide loose space between the cartilaginous cochlea and the ossified or cartilaginous sphenoid elements (ala temporalis and pterygoid). A linear mesenchymal condensation extending between the cochlear wall and ala temporalis suggested the future antero-inferior margin of the carotid canal. This delineation was more clearly identified in later stages. After 25 weeks, 1) the growing pterygoid pushed the PTT upward and, in turn, the PTT pushed the internal carotid artery (ICA) upward toward the petrosa: 2) a membranous ossification occurs in the dense mesenchymal tissue, the latter of which took an appearance of an anterior process of the petrosa; 3) the bony process of the petrosa involved the ICA inside or posteriorly. The bony carotid canal was made with membranous ossification in the dense mesenchymal tissue between the petrosa and sphenoid. The mother tissue was detached from the sphenoid by the PTT. The ossification of the septum between the ICA and tympanic cavity seemed to continue after birth.

9.
Anatomy & Cell Biology ; : 270-279, 2021.
Article in English | WPRIM | ID: wpr-896649

ABSTRACT

Previous studies of midterm fetuses indicated that a cartilaginous fabella appeared to be embedded in the plantaris (PL), and was fused with the gastrocnemius lateral head (GL). We re-examined the topographical anatomy of the fabella or its analogue (a tight fibrous mass) originating in the GL and/or PL by evaluating histological sections of the unilateral knees of 15 late-term fetuses. Regardless of whether the cartilaginous fabella was present (6 fetuses) or absent (9 fetuses), the origins of the PL and GL muscles each had three parts. In each fetus, the fabella or its analogue was embedded in a thick common tendinous origin of the GL and PL. PL1 (whose origin is similar to that of the adult PL) originated from the femoral condyle immediately above the common tendon; PL2 originated from the posteromedial aspect of the fabella or its analogue; and PL3 originated from the inferior aspect of the fabella or its analogue. The muscle fibers of PL1, PL2, and PL3 joined to provide a thick plantaris. GL1 (which is adjacent to PL2) originated from the common tendon in the superior side of the fabella or its analogue and GL2 originated from the inferior side of the fabella or its analogue. GL1 and GL2 joined to provide a thick bundle, whereas GL3 (located far below the fabella or its analogue) originated from the posterior surface aponeurosis.Therefore, drastic reconstruction at these muscle origins was necessary during development. Due to the strong mechanical stress from the GL and the space-occupying effect of the muscle, we hypothesize that PL2 and PL3 are degraded or absorbed into the GL1 and GL2 during the postnatal period, so that the remaining PL1 was likely the remaining PL in adults.

10.
Anatomy & Cell Biology ; : 405-410, 2020.
Article in English | WPRIM | ID: wpr-888917

ABSTRACT

At present, there is no photographic evidence of splitting of the trapezius and sternocleidomastoid muscles (SCMs), which share a common anlage that extends caudally toward the limb bud in the embryo at a length of 9 mm. Therefore, the aim of the present study was to identify which structures divide the caudal end of the common anlage at the first sign of splitting into two muscles. In 11 mm-long specimens, the SCM and trapezius muscles were identified as a single mesenchymal condensation. In 15 and 18 mm-long specimens, the SCM and trapezius muscles were separated and extended posteriorly and lymphatic tissues appeared in a primitive lateral cervical space surrounded by the SCM (anterior). In 21 mm-long specimens, the lymphatic vessels were dilated and the accompanying afferents were forming connections with the subcutaneous tissue through a space between the SCM and trapezius muscles. In 27 mm-long specimens, cutaneous lymphatic vessels were evident and had entered the deep tissue between the SCM and trapezius muscles. Vascular dilation may be viewed as a result of less mechanical stress or pressure after muscle splitting.

11.
Anatomy & Cell Biology ; : 405-410, 2020.
Article in English | WPRIM | ID: wpr-896621

ABSTRACT

At present, there is no photographic evidence of splitting of the trapezius and sternocleidomastoid muscles (SCMs), which share a common anlage that extends caudally toward the limb bud in the embryo at a length of 9 mm. Therefore, the aim of the present study was to identify which structures divide the caudal end of the common anlage at the first sign of splitting into two muscles. In 11 mm-long specimens, the SCM and trapezius muscles were identified as a single mesenchymal condensation. In 15 and 18 mm-long specimens, the SCM and trapezius muscles were separated and extended posteriorly and lymphatic tissues appeared in a primitive lateral cervical space surrounded by the SCM (anterior). In 21 mm-long specimens, the lymphatic vessels were dilated and the accompanying afferents were forming connections with the subcutaneous tissue through a space between the SCM and trapezius muscles. In 27 mm-long specimens, cutaneous lymphatic vessels were evident and had entered the deep tissue between the SCM and trapezius muscles. Vascular dilation may be viewed as a result of less mechanical stress or pressure after muscle splitting.

12.
Anatomy & Cell Biology ; : 278-285, 2019.
Article in English | WPRIM | ID: wpr-762235

ABSTRACT

The human nervus terminalis (terminal nerve) and the nerves to the vomeronasal organ (VNON) are both associated with the olfactory nerves and are of major interest to embryologists. However, there is still limited knowledge on their topographical anatomy in the nasal septum and on the number and distribution of ganglion cells along and near the cribriform plate of the ethmoid bone. We observed serial or semiserial sections of 30 fetuses at 7–18 weeks (crown rump length [CRL], 25–160 mm). Calretinin and S100 protein staining demonstrated not only the terminal nerve along the anterior edge of the perpendicular lamina of the ethmoid, but also the VNON along the posterior edge of the lamina. The terminal nerve was composed of 1–2 nerve bundles that passed through the anterior end of the cribriform plate, whereas the VNON consisted of 2–3 bundles behind the olfactory nerves. The terminal nerve ran along and crossed the posterior side of the nasal branch of the anterior ethmoidal nerve. Multiple clusters of small ganglion cells were found on the lateral surfaces of the ethmoid's crista galli, which are likely the origin of both the terminal nerve and VNON. The ganglions along the crista galli were ball-like and 15–20 µm in diameter and, ranged from 40–153 in unilateral number according to our counting at 21-µm-interval except for one specimen (480 neurons; CRL, 137 mm). An effect of nerve degeneration with increasing age seemed to be masked by a remarkable individual difference.


Subject(s)
Humans , Calbindin 2 , Ethmoid Bone , Fetus , Ganglion Cysts , Individuality , Masks , Nasal Septum , Nerve Degeneration , Neurons , Olfactory Nerve , Vomeronasal Organ
16.
Anatomy & Cell Biology ; : 150-157, 2018.
Article in English | WPRIM | ID: wpr-717228

ABSTRACT

In and after the third trimester, the lung surface is likely to become smooth to facilitate respiratory movements. However, there are no detailed descriptions as to when and how the lung surface becomes regular. According to our observations of 33 fetuses at 9–16 weeks of gestation (crown-rump length [CRL], 39–125 mm), the lung surface, especially its lateral (costal) surface, was comparatively rough due to rapid branching and outward growing of bronchioli at the pseudoglandular phase of lung development. The pulmonary pleura was thin and, beneath the surface mesothelium, no or little mesenchymal tissue was detectable. Veins and lymphatic vessels reached the lung surface until 9 weeks and 16 weeks, respectively. In contrast, in 8 fetuses at 26–34 weeks of gestation (CRL, 210–290 mm), the lung surface was almost smooth because, instead of bronchioli, the developing alveoli faced the external surfaces of the lung. Moreover, the submesothelial tissue became thick due to large numbers of dilated veins connected to deep intersegmental veins. CD34-positive, multilayered fibrous tissue was also evident beneath the mesothelium in these stages. The submesothelial tissue was much thicker at the basal and mediastinal surfaces compared to apical and costal surfaces. Overall, rather than by a mechanical stress from the thoracic wall and diaphragm, a smooth lung surface seemed to be established largely by the thick submesothelial tissue including veins and lymphatic vessels until 26 weeks.


Subject(s)
Female , Humans , Pregnancy , Diaphragm , Epithelium , Fetus , Lung , Lymphatic Vessels , Pleura , Pregnancy Trimester, Third , Stress, Mechanical , Thoracic Wall , Veins
17.
Anatomy & Cell Biology ; : 218-222, 2018.
Article in English | WPRIM | ID: wpr-716883

ABSTRACT

Persistent right umbilical vein (PRUV) is a common anomaly of the venous system. Although candidates for future PRUV were expected to occur more frequently in earlier specimens, evaluation of serial horizontal sections from 58 embryos and fetuses of gestational age 5–7 weeks found that only two of these embryos and fetuses were candidates for anomalies. In a specimen, a degenerating right umbilical vein (UV) joined the thick left UV in a narrow peritoneal space between the liver and abdominal cavity, and in the other specimen, a degenerating left UV joined a thick right UV in the abdominal wall near the liver. In these two specimens, the UV drained into the normal, umbilical portion of the left liver. These results strongly suggested that, other than the usual PRUV draining into the right liver, another type of PRUV was likely to consist of the right UV draining into the left liver.


Subject(s)
Humans , Abdominal Cavity , Abdominal Wall , Embryonic Structures , Fetus , Gallbladder , Gestational Age , Liver , Umbilical Veins
18.
Anatomy & Cell Biology ; : 231-240, 2016.
Article in English | WPRIM | ID: wpr-225096

ABSTRACT

Because the ureter arises from the mesonephric or Wolffian duct (WD), the WD opening should migrate inferiorly along the urogenital sinus or future urethra. However, this process of descent has not been evaluated morphometrically in previous studies and we know little about intermediate morphologies for the descent. In the present work, serial sagittal sections of 15 specimens at gestational age 6–12 weeks and serial horizontal sections of 20 specimens at 6–10 weeks were analyzed. Monitoring of horizontal sections showed that, until 9 weeks, a heart-, lozenge- or oval-shape of the initial urogenital sinus remained in the bladder and urethra. Thus, the future bladder and urethra could not be distinguished by the transverse section or plane. The maximum width of the urogenital sinus or bladder at 6–10 weeks was 0.8 mm, although its supero-inferior length reached 5 mm at 10 weeks. During earlier stages, however, the medial shift of the WD was rather evident. Depending on the extent of upward growth of the bladder smooth muscle, the descent of the vas deferens became evident at 10–12 weeks. Development of the urethral rhabdosphincter likely resulted in the differentiation of urogenital sinus into the urethra and bladder before formation of the bladder neck with 3-layered smooth muscles. Development of the prostate followed these morphological changes, later accelerating the further descent of the WD opening. Because of their close topographical relationships, slight anomalies or accidents of the umbilical cord at 10–12 weeks may have a significant effect on normal anatomy.


Subject(s)
Humans , Embryonic Structures , Fetus , Gestational Age , Human Development , Muscle, Smooth , Neck , Prostate , Umbilical Cord , Ureter , Urethra , Urinary Bladder , Vas Deferens , Wolffian Ducts
19.
Anatomy & Cell Biology ; : 116-124, 2016.
Article in English | WPRIM | ID: wpr-26903

ABSTRACT

The raphe of the human penis and scrotum is considered to develop secondarily after disappearance of the initial midline seam by fusion of the bilateral genital folds. However, the fetal development was still obscure. We examined histological sections of 30 fetuses (17 males and 13 females) at 10-15 weeks. In male fetuses, the scrotum was not yet clearly identified because of no descent of testis. The perineal raphe was thin and wavy at 10 weeks, and it was continuous with and took a direction same as the inferior wall of the closed penile urethra after physiological hypospadias. Depending on growth of the bulbospongiosus muscle and corpus spongiosus penis, the midline intermuscular septum obtained a connection to the subcutaneous wavy raphe and made the latter thick and straight at 12-15 weeks. Notably, the perineal raphe extended posteriorly to attach to the external anal sphincter. In female fetuses, an epithelial fusion occurred along a short distance at the posterior end of the vestibule. However, in front of the external anal sphincter, a large midline mesenchymal tissue from the urorectal septum did not contain a raphe-like structure. Moreover, since the bilateral bulbospongiosus muscles were separated widely by the vestibule, they did not provide a midline septum. Fetal development of the perineal raphe was accelerated by reinforcement from the muscular septum. In contrast, without such a muscular support, the female raphe could not maintain its growth even if the seed appeared at the posterior end of the vestibule.


Subject(s)
Female , Humans , Male , Anal Canal , Fetal Development , Fetus , Hypospadias , Muscles , Penis , Scrotum , Testis , Urethra
20.
Anatomy & Cell Biology ; : 218-221, 2015.
Article in English | WPRIM | ID: wpr-81735

ABSTRACT

In serial sagittal sections of a fetus on week 9 (crown-rump length, 36 mm), we incidentally found absence of the usual portal vein through the hepatoduodenal ligament. Instead, an anomalous portal vein originated behind the pancreatic body, crossed the lesser sac and merged with the upper part of the ductus venosus. During the course across the lesser sac, the vein provided a deep notch of the liver caudate lobe (Spiegel's lobe). The hepatoduodenal ligament contained the hepatic artery, the common bile duct and, at the right posterior margin of the ligament, and a branch of the anomalous portal vein which communicated with the usual right branch of the portal vein at the hepatic hilum. The umbilical portion of the portal vein took a usual morphology and received the umbilical vein and gave off the ductus venosus. Although it seemed not to be described yet, the present anomalous portal vein was likely to be a persistent left vitelline vein. The hepatoduodenal ligament was unlikely to include the left vitelline vein in contrast to the usual concept.


Subject(s)
Common Bile Duct , Fetus , Hepatic Artery , Ligaments , Liver , Peritoneal Cavity , Portal Vein , Umbilical Veins , Veins , Vitellins
SELECTION OF CITATIONS
SEARCH DETAIL