Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese journal of integrative medicine ; (12): 944-948, 2015.
Article in English | WPRIM | ID: wpr-287153

ABSTRACT

<p><b>OBJECTIVE</b>To study the effect of gastrodin on isolated thoracic aorta rings of rats and to investigate the potential mechanism.</p><p><b>METHODS</b>A perfusion model of isolated thoracic aorta rings of rats was applied. The effect of cumulative gastrodin (5, 50, 100,150, 200, and 250 μmol/L) on endothelium-intact aorta rings was investigated. The same procedure was applied to observe the effect of gastrodin on endothelium-intact/denuded aorta rings pre-contracted with 10(-6) mol/L phenylephrine hydrochloride (PE). The aorta rings incubated by 200 mmol/L gastrodin in the Ca(2+)-free (K-H) solution was contracted by using PE. The effect of 200 mmol/L gastrodin on endothelium-denuded aorta rings pre-contracted with 60 mmol/L KCl was also observed.</p><p><b>RESULTS</b>Compared with the denuded gastrodin group, the intact gastrodin group could significantly relax the PE-contracted aorta rings (P<0.01). In Ca(2+)-free (K-H) solution KHS, the PE-induced contraction rate of aorta rings pre-incubated by gastrodin was 6.5%±0.7%, which was significantly less than the control group (11.8%±0.9%,P<0.01). However, after 3 mmol/L CaCl2 was added, the Ca(2+)-induced contraction in the gastrodin group (51.7%±2.4%) was similar to that in the control group (49.8%±2.8%). The contractile rate of rings in the KCl-contracted gastrodin group (96.3%±0.6%) was not significantly different from that in the control group (96.8%±1.2%).</p><p><b>CONCLUSIONS</b>Gastrodin has the effect of vasorelaxation on isolated thoracic aorta rings of rats. The mechanism of the vasorelaxation of gastrodin may mainly work through the inhibition of inositol 1, 4, 5-trisphosphosphate receptor on the sarcoplasmic reticulum of the arterial smooth muscle, which leads to the reduction of the Ca(2+) released from the sarcoplasmic reticulum.</p>


Subject(s)
Animals , Female , Male , Rats , Aorta, Thoracic , Physiology , Benzyl Alcohols , Pharmacology , Calcium , Metabolism , Endothelium, Vascular , Physiology , Glucosides , Pharmacology , In Vitro Techniques , Phenylephrine , Pharmacology , Rats, Wistar , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL