Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J. appl. oral sci ; 30: e20220086, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1405373

ABSTRACT

Abstract Bioactive molecules present the potential to be used along with biomaterials in vital pulp therapy and regenerative endodontic treatment. Objective The aim of this study was to assess the effects of the combined use of bone morphogenetic protein-7 (BMP-7) and mineral trioxide aggregate (MTA) on the proliferation, migration, and differentiation of human dental pulp stem cells (DPSCs). Methodology For the proliferation analysis, DPSCs were incubated with a growth medium and treated with MTA and/or BMP-7 at different concentrations. For the following analyses, DPSCs were incubated with a differentiation medium and treated with MTA and/or BMP-7. Moreover, there were groups in which DPSCs were incubated with the growth medium (control), the differentiation medium, or DMEM/F12 containing fetal bovine serum, and not treated with MTA or BMP-7. Cell proliferation was analyzed using the WST-1 assay. The odontogenic/osteogenic differentiation was evaluated by immunocytochemistry, alkaline phosphatase (ALP) activity assay, alizarin red staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell migration was evaluated using a wound-healing assay. Data were analyzed using analysis of variance and Tukey test (p=0.05). Results The use of BMP-7 with MTA presented no significant effect on cell proliferation in comparison with the treatment with MTA alone (p>0.05), but showed higher ALP activity, increased mineralization, and higher expression of DMP1 and DSPP when compared with other groups (p<0.05). Nestin expression was higher in the control group than in groups treated with MTA and/or BMP-7 (p<0.05). The cell migration rate increased after treatment with MTA when compared with other groups in all periods of time (p<0.05). At 72 hours, the wound area was smaller in groups treated with MTA and/or BMP-7 than in the control group (p<0.05). Conclusion The use of BMP-7 with MTA increased odontogenic/osteogenic differentiation without adversely affecting proliferation and migration of DPSCs. The use of BMP-7 with MTA may improve treatment outcomes by increasing repair and regeneration capacity of DPSCs.

2.
J. appl. oral sci ; 27: e20180093, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-975896

ABSTRACT

Abstract Surface changes in biological environments are critical for the evaluation of physical and biological activity of biomaterials. Objective: This study investigated surface alterations of calcium silicate-based cements after exposure to different environments. Material and Methods: Forty-eight cylindrical cavities were prepared on root surfaces. The cavities were filled using ProRoot MTA or Biodentine and assigned to four subgroups (n=6): dry, wet, acidic, and blood. Surface topographies were evaluated using an optical profilometer for 28 days, and the roughness of the material surfaces was quantified. Vertical dimensional change was measured by determining the height difference between the material surface and the flat tooth surface. Data were compared with a two-way repeated measures ANOVA and Bonferroni tests. Results: In dry condition, the surface roughness of MTA or Biodentine was constant up to 3 days (p>0.05) but decreased after 28 days (p<0.05). In dry condition, ProRoot MTA presented constant surface level through time, while Biodentine showed decreased surface level after 28 days. In wet condition, the roughness and the surface levels of both materials increased after 1 day (p<0.05). Neither the surface roughness nor the levels of the materials showed significant changes in acidic conditions (p>0.05). Both materials showed the highest roughness in blood conditions on the 1st day (p<0.05), while the surface roughness in blood decreased dramatically after 28 days. The roughness of Biodentine was higher in wet conditions up to 3 days compared with ProRoot MTA (p<0.05). Likewise, in blood condition, Biodentine showed higher roughness on the 28th day than ProRoot MTA (p<0.05). Conclusions: Dry, wet, and blood conditions had a time-dependent effect on the surface roughness and vertical dimensional changes of the materials. However, acidic conditions did not affect the roughness and the surface level of the materials.


Subject(s)
Humans , Oxides/chemistry , Root Canal Filling Materials/chemistry , Water/chemistry , Silicates/chemistry , Calcium Compounds/chemistry , Aluminum Compounds/chemistry , Reference Values , Surface Properties , Time Factors , Materials Testing , Reproducibility of Results , Analysis of Variance , Drug Combinations
SELECTION OF CITATIONS
SEARCH DETAIL