Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Imaging Science in Dentistry ; : 171-179, 2022.
Article in English | WPRIM | ID: wpr-937648

ABSTRACT

Purpose@#The aim of this study was to assess the accuracy of cone-beam computed tomographic (CBCT) images obtained using different voxel sizes in measuring trabecular bone microstructure in comparison to micro-CT. @*Materials and Methods@#Twelve human skull bones containing posterior-mandibular alveolar bone regions were analyzed. CBCT images were obtained at voxel sizes of 0.075 mm (high: HI) and 0.2 mm (standard: Std), while micro-CT imaging used voxel sizes of 0.06 mm (HI) and 0.12 mm (Std). Analyses were performed using CTAn software with the standardized automatic global threshold method. Intraclass correlation coefficients were used to evaluate the consistency and agreement of paired measurements for bone volume (BV), percent bone volume (BV/TV), bone surface (BS), trabecular thickness (TbTh), trabecular separation (TbSp), trabecular number (TbN), trabecular pattern factor (TbPf), and structure model index (SMI). @*Results@#When compared to micro-CT, CBCT images had higher BV, BV/TV, and TbTh values, while micro-CT images had lower BS, TbSp, TbN, TbPf, and SMI values (P<0.05). The BV, BV/BT, TbTh, and TbSp variables were higher with Std voxels, whereas the BS, TbPf, and SMI variables were higher with HI voxels for both imaging methods. For each imaging modality and voxel size evaluated, BV, BS, and TbTh were significantly different (P<0.05). TbN, TbPf, and SMI showed statistically significant differences between imaging methods (P<0.05). The consistency and absolute agreement between micro-CT and CBCT were excellent for all variables. @*Conclusion@#This study demonstrated the potential of high-resolution CBCT imaging for quantitative bone morphometry assessment.

2.
Imaging Science in Dentistry ; : 93-101, 2022.
Article in English | WPRIM | ID: wpr-925047

ABSTRACT

Purpose@#This study compared the effectiveness of complementary metal-oxide semiconductors (CMOS) and photostimulable phosphor (PSP) plates as intraoral imaging systems in terms of time efficacy, patient comfort, and subjective image quality assessment in real clinical settings. @*Materials and Methods@#Fifty-eight patients (25 women and 33 men) were included. Patients were referred for a full-mouth radiological examination including 1 bitewing radiograph (left and right) and 8 periapical radiographs for each side (left maxilla/mandible and right maxilla/mandible). For each patient, 1 side of the dental arch was radiographed using a CMOS detector, whereas the other side was radiographed using a PSP detector, ensuring an equal number of left and right arches imaged by each detector. Clinical application time, comfort/pain, and subjective image quality were assessed for each detector. Continuous variables were summarized as mean±standard deviation. Differences between detectors were evaluated using repeated-measures analysis of variance. P0.05). The performance of both observers in subjectively assessing structures was significantly higher when using CMOS images than when using PSP images for all regions (P<0.05). @*Conclusion@#The CMOS detector was found to be superior to the PSP detector in terms of clinical time efficacy and subjective image quality.

3.
Imaging Science in Dentistry ; : 109-115, 2017.
Article in English | WPRIM | ID: wpr-191868

ABSTRACT

PURPOSE: The aim of this study was to assess the ex vivo diagnostic ability of 9 different cone-beam computed tomography (CBCT) settings in the detection of recurrent caries under amalgam restorations in primary teeth. MATERIALS AND METHODS: Fifty-two primary teeth were used. Twenty-six teeth had dentine caries and 26 teeth did not have dentine caries. Black class II cavities were prepared and restored with amalgam. In the 26 carious teeth, recurrent caries were left under restorations. The other 26 intact teeth that did not have caries served as controls. Teeth were imaged using a 100×90-mm field of view and a 0.2-mm voxel size with 9 different CBCT settings. Four observers assessed the images using a 5-point scale. Kappa values were calculated to assess observer agreement. CBCT settings were compared with the gold standard using a receiver operating characteristic analysis. The area under the curve (AUC) values for each setting were compared using the chi-square test, with a significance level of α=.05. RESULTS: Intraobserver kappa values ranged from 0.366 to 0.664 for observer 1, from 0.311 to 0.447 for observer 2, from 0.597 to 1.000 for observer 3, and from 0.869 to 1 for observer 4. Furthermore, interobserver kappa values among the observers ranged from 0.133 to 0.814 for the first reading and from 0.197 to 0.805 for the second reading. The highest AUC values were found for setting 5 (0.5916) and setting 3 (0.5886), and were not found to be statistically significant (P>.05). CONCLUSION: Variations in tube voltage and tube current did not affect the detection of recurrent caries under amalgam restorations in primary teeth.


Subject(s)
Area Under Curve , Cone-Beam Computed Tomography , Dental Caries , Dentin , Diagnosis , ROC Curve , Tooth , Tooth, Deciduous
4.
Imaging Science in Dentistry ; : 23-29, 2015.
Article in English | WPRIM | ID: wpr-221772

ABSTRACT

PURPOSE: This study aimed to assess the reliability of measurements performed on three-dimensional (3D) virtual models of maxillary defects obtained using cone-beam computed tomography (CBCT) and 3D optical scanning. MATERIALS AND METHODS: Mechanical cavities simulating maxillary defects were prepared on the hard palate of nine cadavers. Images were obtained using a CBCT unit at three different fields-of-views (FOVs) and voxel sizes: 1) 60x60 mm FOV, 0.125 mm3 (FOV60); 2) 80x80 mm FOV, 0.160 mm3 (FOV80); and 3) 100x100 mm FOV, 0.250 mm3 (FOV100). Superimposition of the images was performed using software called VRMesh Design. Automated volume measurements were conducted, and differences between surfaces were demonstrated. Silicon impressions obtained from the defects were also scanned with a 3D optical scanner. Virtual models obtained using VRMesh Design were compared with impressions obtained by scanning silicon models. Gold standard volumes of the impression models were then compared with CBCT and 3D scanner measurements. Further, the general linear model was used, and the significance was set to p=0.05. RESULTS: A comparison of the results obtained by the observers and methods revealed the p values to be smaller than 0.05, suggesting that the measurement variations were caused by both methods and observers along with the different cadaver specimens used. Further, the 3D scanner measurements were closer to the gold standard measurements when compared to the CBCT measurements. CONCLUSION: In the assessment of artificially created maxillary defects, the 3D scanner measurements were more accurate than the CBCT measurements.


Subject(s)
Cadaver , Cone-Beam Computed Tomography , Dimensional Measurement Accuracy , Linear Models , Maxillofacial Prosthesis , Palate, Hard , Silicones
5.
Imaging Science in Dentistry ; : 205-211, 2015.
Article in English | WPRIM | ID: wpr-92645

ABSTRACT

PURPOSE: This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. MATERIALS AND METHODS: Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this study. The specimens were classified into three groups: maxillary molars, mandibular molars with three canals, and mandibular molars with four canals. Differences between the gold standard and the observations made using the imaging methods were calculated using Spearman's rho correlation coefficient test. RESULTS: The presence of accessory canals in micro-CT images of maxillary and mandibular root canals showed a statistically significant correlation with the stereomicroscopic images used as a gold standard. No statistically significant correlation was found between the CBCT findings and the stereomicroscopic images. CONCLUSION: Although micro-CT is not suitable for clinical use, it provides more detailed information about minor anatomical structures. However, CBCT is convenient for clinical use but may not be capable of adequately analyzing the internal anatomy of primary teeth.


Subject(s)
Humans , Cone-Beam Computed Tomography , Decalcification Technique , Dental Pulp Cavity , Molar , Tooth, Deciduous , X-Ray Microtomography
6.
Imaging Science in Dentistry ; : 129-137, 2012.
Article in English | WPRIM | ID: wpr-222604

ABSTRACT

PURPOSE: To compare different radiographic methods for assessing endodontically treated teeth. MATERIALS AND METHODS: Root canal treatments were applied in 120 extracted mandibular teeth, which were divided into four groups: (1) ideal root canal treatment (60 teeth), (2) insufficient lateral condensation (20 teeth), (3) root canals filled short of the apex (20 teeth), (4) overfilled root canal treatment (20 teeth). The teeth were imaged using intraoral film, panoramic film, digital intraoral systems (CCD and PSP), CCD obtained with portable X-ray source, digital panoramic, and CBCT images obtained at 0.3 mm3 and 0.2 mm3 voxel size. Images were evaluated separately by three observers, twice. Kappa coefficients were calculated. The percentage of correct readings obtained from each modality was calculated and compared using a t-test (p<0.05). RESULTS: The intra-observer kappa for each observer ranged between 0.327 and 0.849. The inter-observer kappa for each observer for both readings ranged between 0.312 and 0.749. For the ideal root canal treatment group, CBCT with 0.2 mm3 voxel images revealed the best results. For insufficient lateral condensation, the best readings were found with periapical film followed by CCD and PSP. The assessment of teeth with root canals filled short of the apex showed the highest percentage of correct readings by CBCT and CCD. For the overfilled canal treatment group, PSP images and conventional periapical film radiographs had the best scores. CONCLUSION: CBCT was found to be successful in the assessment of teeth with ideal root canal treatment and teeth with canals filled short of the apex.


Subject(s)
Cone-Beam Computed Tomography , Dental Pulp Cavity , Radiography, Dental , Reading , Root Canal Therapy , Tooth
SELECTION OF CITATIONS
SEARCH DETAIL