Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Mycobiology ; : 528-531, 2020.
Article in English | WPRIM | ID: wpr-902716

ABSTRACT

Scopulariopsis brevicaulis is a widely distributed soil fungus known as a common saprotroph of biodegradation. It is also an opportunistic human pathogen that can produce various secondary metabolites. Here, we report the first complete mitochondrial genome sequence of S. brevicaulis isolated from air in South Korea. Total length of the mitochondrial genome is 28,829 bp and encoded 42 genes (15 protein-coding genes, 2 rRNAs, and 25 tRNAs). Nucleotide sequence of coding region takes over 26.2%, and overall GC content is 27.6%. Phylogenetic trees present that S. brevicaulis is clustered with Lomentospora prolificans with presenting various mitochondrial genome length.

2.
Mycobiology ; : 528-531, 2020.
Article in English | WPRIM | ID: wpr-895012

ABSTRACT

Scopulariopsis brevicaulis is a widely distributed soil fungus known as a common saprotroph of biodegradation. It is also an opportunistic human pathogen that can produce various secondary metabolites. Here, we report the first complete mitochondrial genome sequence of S. brevicaulis isolated from air in South Korea. Total length of the mitochondrial genome is 28,829 bp and encoded 42 genes (15 protein-coding genes, 2 rRNAs, and 25 tRNAs). Nucleotide sequence of coding region takes over 26.2%, and overall GC content is 27.6%. Phylogenetic trees present that S. brevicaulis is clustered with Lomentospora prolificans with presenting various mitochondrial genome length.

3.
Mycobiology ; : 171-182, 2009.
Article in English | WPRIM | ID: wpr-729930

ABSTRACT

Many aspergilli that belongs to ascomycetes have sexuality. In a homothallic or self-fertile fungus, a number of fruiting bodies or cleistothecia are formed in a thallus grown from a single haploid conidia or ascospores. Genome-sequencing project revealed that two mating genes (MAT) encoding the regulatory proteins that are necessary for controlling partner recognition in heterothallic fungi were conserved in most aspergilli. The MAT gene products in some self-fertile species were not required for recognition of mating partner at pheromone-signaling stage but required at later stages of sexual development. Various environmental factors such as nutritional status, culture conditions and several stresses, influence the decision or progression of sexual reproduction. A large number of genes are expected to be involved in sexual development of Emericella nidulans (anamorph: Aspergillus nidulans), a genetic and biological model organism in aspergilli. The sexual development process can be grouped into several development stages, including the decision of sexual reproductive cycle, mating process, growth of fruiting body, karyogamy followed by meiosis, and sporulation process. Complicated regulatory networks, such as signal transduction pathways and gene expression controls, may work in each stage and stage-to-stage linkages. In this review, the components joining in the regulatory pathways of sexual development, although they constitute only a small part of the whole regulatory networks, are briefly mentioned. Some of them control sexual development positively and some do negatively. Regarding the difficulties for studying sexual differentiation compare to asexual one, recent progresses in molecular genetics of E. nidulans enlarge the boundaries of understanding sexual development in the non-fertile species as well as in fertile fungi.


Subject(s)
Ascomycota , Aspergillus , Emericella , Fruit , Fungi , Gene Expression , Haploidy , Meiosis , Models, Biological , Molecular Biology , Nutritional Status , Proteins , Reproduction , Sex Differentiation , Sexual Development , Sexuality , Signal Transduction , Spores, Fungal
4.
Mycobiology ; : 91-96, 2007.
Article in English | WPRIM | ID: wpr-730109

ABSTRACT

In the present study we first report in Korea the identification and characterization of Fusarium oxysporum isolated from rotten stems and roots of paprika (Capsicum annuum var. grossum) at Masan, Kyungsangnamdo in 2006. The fungal species produced white aerial mycelia accompanying with dark violet pigment on PDA. The optimal temperature and pH for the growth of the species was 25degrees C and pH 7, respectively. Microscopic observation of one of isolates of the species shows that its conidiophores are unbranched and monophialides, its microconidia have oval-ellipsoidal shape with no septate and are of 3.0~11 x 1.5~3.5 microm sizes, its macroconidia are of 15~20 x 2.0~3.5 microm sizes and have slightly curved or slender shape with 2~3 septate. The results of molecular analysis show that the ITS rDNA of F. oxysporum from paprika shares 100% sequence identity with that of known F. oxysporum isolates. The identified species proved it's pathogenicity by causing rotting symptom when it was inoculated on paprika fruits. The growth of F. oxysporum from paprika was suppressed on PDA by agrochemicals such as benomyl, tebuconazole and azoxystrobin. The identified species has the ability of producing extracelluar enzymes that degrade cellobiose and pectin.


Subject(s)
Agrochemicals , Benomyl , Capsicum , Cellobiose , DNA, Ribosomal , Fruit , Fusarium , Hydrogen-Ion Concentration , Korea , Viola , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL