Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-159965

ABSTRACT

Summary: Opportunistic infections are common complications of advanced immuno-deficiency in individuals with Human Immunodeficiency Virus (HIV) infection. Following involvement of the lung, the central nervous system (CNS) is the second most commonly affected organ. We report two cases of concurrent cryptococcal meningitis and tuberculosis (TB) in HIV infected persons. A high suspicion of multiple opportunistic infections should be kept in mind in HIV seropositive individuals.


Subject(s)
AIDS-Related Opportunistic Infections/drug therapy , AIDS-Related Opportunistic Infections/microbiology , AIDS-Related Opportunistic Infections/physiopathology , Adult , Anti-Retroviral Agents/administration & dosage , Antifungal Agents/administration & dosage , Antitubercular Agents/administration & dosage , Coinfection , Cryptococcus neoformans/isolation & purification , HIV Infections/complications , HIV Infections/drug therapy , Humans , Male , Meningitis, Cryptococcal/complications , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/physiopathology , Treatment Outcome , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/diagnostic imaging
2.
Indian J Physiol Pharmacol ; 1995 Oct; 39(4): 369-76
Article in English | IMSEAR | ID: sea-106216

ABSTRACT

Chemitrodes which permit electrical and chemical stimulation of the same hypothalamic loci were implanted in anterior hypothalamic and preoptic regions. These sites were stimulated electrically using biphasic square wave pulse (1 ms, 60 Hz) at a current strength ranging from 150-800 microA to evoke an aggressive response. At lower current strength of 150-200 micro A, defence response, a sort of non-specific response can be elicited from these regions. Increasing the current strength to 400 microA led to the recruitment of affective and somatic components and changed the response pattern either to affective attack or flight. The loci producing affective attack response were localized more laterally and ventrally while the loci producing flight response were located in the dorsomedial regions of the hypothalamus. In this response the animal made a goal-directed attempt to escape through an escape route. Increasing the current strength to 500 microA in the dorsomedial regions changed the flight response to violent flight, which involved vigorous running with unsheathed claws and attacking objects if obstructed. Similar increase in current strength at loci producing affective attack only led to a decrease in the latency of response and made the attack more vigorous. Microinfusion of carbachol in graded doses of 2-15 microgram at all these loci produced a profound affective display. At lower doses of 2 and 5 microgram, only some components of affective display like alertness, pupillary dilation and ear flatness were exhibited. Increasing the dose to 10 micrograms and 15 micrograms led to the recruitment of other affective components like piloerection, salivation, hissing and baring of teeth. Microinfusion of carbachol at all loci producing affective attack on electrical stimulation produced a prononced affective display while microinfusion of carbachol at loci producing flight response led to the development of defence posture. At six loci a typical flight response was obtained while violent flight was never exhibited at any of these sites. Microinfusion of atropine (10 microgram in 1.0 microliter saline) at these loci completely blocked the carbachol induced response. Both somatomotor and affective components were completely inhibited. However, the responses obtained on electrical stimulation were not totally blocked following atropine infusion and some of the somatomotor and affective components could be elicited with higher current strength. These studies indicate the involvement of cholinoceptive mechanisms in the elicitation of hypothalamically induced aggresive behaviour. Microinfustion of hexamethonium bromide, a nicotinic blocker in 50 micrograms doses did not affect the aggressive response.


Subject(s)
Aggression/drug effects , Animals , Atropine/administration & dosage , Carbachol/administration & dosage , Cats , Electric Stimulation , Electrodes, Implanted , Female , Hexamethonium/administration & dosage , Hypothalamus/anatomy & histology , Hypothalamus, Anterior/drug effects , Male , Microinjections , Muscarinic Agonists/administration & dosage , Muscarinic Antagonists/administration & dosage , Nicotinic Antagonists/administration & dosage , Preoptic Area/drug effects , Stimulation, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL